

4G. Measuring Micro-mobility

09:00 AM - 11:15 AM

Governance & Integration

CHALMERS

UNIVERSITY OF TECHNOLOGY

Impacts of shared micromobility on the environment in 142 EU cities

Kun Gao, Ruo Jia, Marina Wiemers

Urban Mobility Systems Division of Geology and Geotechnics Chalmers University of Technology

Background

- Shared micro-mobility system (SMS, e.g., e-scooter, e-bike, bike and e-moped)
- Regarded as low-budget alternative and potential environmentally friendly travel choices
- Prosperous development in EU
- □ Private vehicle alternatives or public transport alternatives?
 - High percentage of replacing walk or transit
- □ Waste of resources or eco-friendly?
 - Life-cycle emission factor is pretty high

Questions:

- □ Is SMS really sustainable?
- □ What are the hurdles of SMS?
- How to promote the sustainability of SMS?

High-resolution and systematic assessments

Assessment: high resolution framework using big data

User and system influences of SMS:

- □ Spatiotemporal usage patterns (e.g., ridership, duration, distance and locations)
- □ Substituted transport modes (large spatiotemporal heterogeneity)
- □ Life-cycle cost and emissions

Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.g., travel time/cost/emission) Influences = Metrics for same trips (e.

Previous methods:

- Many qualitative discussions
- Limited surveys to obtain substituted transport modes/usage
- □ Aggregated level analysis

Challenges:

- Spatial variation
- Temporal variation
- Individual-to-individual variation

.

Assessment: high resolution and scalable framework using big data

Endorsed by **six academic publications** for shared mobility in Transportation Research Part A/D, Sustainable Cities and Society (JCR 1 and top journals in transport)

CHALMERS UNIVERSITY OF TECHNOLOGY

Insights from big data: substitution and emission impacts

- E-scooter sharing systems
- Result in Stockholm, Gothenburg and Malmo
- One year (2022) data from two operators
 - Complete data
 - □ Trip-level inference approach
 - □ High-resolution impact analysis

Modal substitution rate

91.34%, 89.75% and 89.2% replace walk, bike or transit

- Modal substitution
- □ Accessibility
- Emission reduction
- Reduced travel time

GHG Emission reduction

8.6%, 10% and 11% positive impact

6

Insights from big data: emission and reducing user travel time

Spatial variation of GHG emission and travel time reduction

Reduce 6.1 min per trip

Average reduced travel time per trip

All zones positive impact

8.3%, 7.5% and 2.0% positive impact

Insights from big data: systematic emission neutral points

GHG emission impacts depends on life-cycle emission factors of e-scooter sharing, usage patterns and substitution to other transport modes

Balance points

Insights from big data: Accessibility gains

Public transit VS Public transit+shared e-scooters Accessibility Gains by E-Scooter Combined with Transit Compared to Transit-only 57.8580000 70000 57.8060000 57.7550000Latitude 22.20 40000 57.6530000 57.6020000 10000 57.55

12.0

12.1

12.2

12.3

11.7

11.8

11.9

Accessibility improvement to jobs

CHALMERS

Probability of replacing private cars
6.5% -13.1%
On average 10%.

Probability of replacing ride-hailing

- **D** 0.5% 29.0%
- □ On average 8%
- Poland, Spain, and Slovakia have the highest probabilities.
- Norway has the low probability due to relatively high cost.

Country Level Comparison on Probability of Replacing Car

Probability of replacing walking
19.2% - 46.6%
On average 35.4%

Probability of replacing transit20.7% - 50%On average 38.6%

Country Level Comparison on Probability of Replacing Car

GHG reduction per e-scooter trip

- □ -50.7-85.9 eq-*CO*₂/g
- □ On average, 11.07 g CO₂-eq
- France, Hungary, Italy, Poland, Slovakia, and Spain have a net GHG reduction.
- For the other 10 countries, overall negative GHG reduction

Reduced travel time per e-scooter trip

- □ 3.1 minutes to 6.4 minutes
- □ On average, 5.2 minutes
- UK, Switzerland, Sweden, Norway, Germany, Finland top in reduced travel time

City level comparison between GHG emission and travel time ٠ reduction

-40

-60

Digital tools for systematic performance evaluation of SM for analyst, planner and manager based on big data

UNIVERSITY OF TECHNOLOGY

THANKS FOR YOUR ATTENTION

Kun Gao gkun@chalmers.se

R Baden-Württemberg Ministry of Transport

27-28 NOVEMBER 2024

Bolt

KARLSRUHE (DE)

First, mid and last mile

Why shared micromobility is the partner that public transport needs

Haya Douidri Director of Public Policy and Licensing 15.08.2013

Bolt: Micromobility

- Part of a multimodal offer consisting of **5** core services
- Operate both scooters and e-bikes in **25+ countries**
- European industry leader operating ~280,000 scooters
- Strong track record across CEE, Baltics, Nordics and Western Europe

Bolt supports a multimodal transport network

Public transport

The original form of shared mobility

Shared mobility

Strengthening connectivity of the network

Our **micromobility** services are **critical** to this approach

Public transport in 2024

Public transport is the **original** form of shared mobility and remains the most efficient tool available to cities.

Despite this, only **half** the global population has convenient access to it (75% in Europe and the US, 33% in sub-Saharan Africa)*

Those with access also face **different availability** throughout the day and week. Public transport often needs to compromise between frequency and coverage, causing gaps and slow services in the network.

*Shared Mobility's Global Impact - Oliver Wyman Mobility Forum, November 2023

Micromobility can provide:

- First and last-mile connectivity; bridging gaps between public transit stops and final destinations.
- **Tailored services** that connect public transport deserts.
- Integrations to public transport apps like Jelbi and Floyo to increase range of services available.

47% of Bolt journeys now **connect** with public transport* 🚒

*Internal Bolt Data: 1,400 Scooter rides across 6 markets - Spring 2024

The benefits outweigh the challenges

Communities

50% of Bolt Scooter users have made a purchase at local businesses within their last five trips, with 80% making purchases on more than two of those trips.*

Berliners breathe easier as hybrid working cuts exhaust fumes

Number of cars on German capital's roads is 12 per cent lower than before the pandemic — on one commuter route it has dropped 37 per cent in a decade

Consumer

Micromobility supports changing travel habits and reduces the likelihood to own a car. **53%** of Bolt scooter customers now use service to commute.*

Modal shift

Car usage is **down 12%** since 2019 in **Berlin****, a city where micromobility and public transport connectivity on Bolt is noticeably high (above 60%)

*Bolt Survey - 2740 Scooter users across 14 countries - August 2024 ** KCW study for Agora Verkehrswende and the WZB Berlin Social Science Centre

0

These impacts are well-known in city centres

But we wanted to explore them further

We rolled up our sleeves and gathered data

Study conducted with Wildau University of Applied Sciences to deploy and monitor use of Bolt vehicles in Berlin suburbs over 9 months.

Locations

- Erkner
- Lichtenrade
- Zehlendorf

Vehicles

- 50 e-bikes
- 50 e-scooters

Data sources

- Usage data
- User surveys
- Expert interviews

Research locations

Key findings

- **51-67%** of riders used scooters as a first/last mile connection.
- 24-35% did so several times per week.

Conclusion: Shared micromobility can expand the reach of public transport.

Key findings

- There was a
 usage peak
 between 1-6am
- This was higher usage than the city centre at that same time

Conclusion: Shared micromobility supplements public transport when service is limited.

Key findings

- 60-68% of users said they used micromobility to replace car trips.
- 24-28% did so at least once/week.

Conclusion: The combination of the two systems can provide an attractive alternative to cars. 0

Frequency of usage as alternative to the car

Recommendations

Taking it further

- Coordinated deployment: including deployment location and time coordination, supported by incentives for lower demand areas to fill gaps
- Fair fees: link operators' financial contributions directly to infrastructure development or other improvements
- Flexible regulation: the city's goals should shape the form of regulation
- Coordinated planning: micromobility should be included in Sustainable Urban Mobility Plans, with extensive data sharing.

27-28 NOVEMBER 2024

KARLSRUHE (DE)

Baden-Württemberg Ministry of Transport

© MINISTRY OF TRANSPORT BADEN-WÜRTTEM

E-scooters

Shared vs. privately owned, and e-scooter vs. public transport

Nils Fearnley naf@toi.no Espen Johnsson ejo@toi.no Institute of Transport Economics, Norway

Does e-scooter ownership matter?

Shared vs. privately owned

- . Assumed 20:1 private:shared e-scooters in Norway
 - ~500 000 private
 - ~ ~25 000 shared
- . All existing knowledge relates to shared e-scooters
- Data analysed: Annual national e-scooter surveys 2019-23
 - 6045 unique e-scooter users

Most recent trip

	Shared e-scooter	Private e-scooter
• Male	59 %	64 %
 Used in rural area 	1 %	16 %
 To/from school/work 	47 %	36 %
 Used helmet 	7 %	41 %
 Replaced car 	12 %	29 %
 Replaced w/c 	55 %	39 %
 Replaced PT 	31 %	25 %

Does access to e-scooters change the need for a car for you or your household?

tøri

Conclusions

- . Ownership matters
- Private e-scooters replace more car trips and more car ownership
- . Helmet use higher on private
 - Yet most fatal accidents with private

Public transport vs. e-scooter

Material and Methods

- . Trip data observation data.
 - Core dataset 130,698 e-scooter trips from June 2021. (exact time, location, distance travelled, and time elapsed)
- . Open Trip Planner and GTFS file for Oslo
 - Hypothetical walk, bike and PT trips generated based on actual scoter rides
- User survey (Oct- Nov 2021, Oslo only N=1921, five companies)
- MIS continuous market information survey conducted by the PTA

- Trips, roughly half of the e-scooter trips were geographically parallel to PT
- In only 42.7 % of the cases were there an PT alternative to the e-scooter trip in question
- Probability of having a PT alternative increased in weekends, with distance, with nearness to PTstops and decreased by night

E-scooters much faster than PT

Ride distance (meters, binned)

Ride distance histogram vs PT alternative or not

Accumulated rides by length

• Over 92 % of rides are competetive vs PT

More direct rides during morning rush

• Faster rides with less deviation from the optimal route

Ride speed vs ride distance/optimal route relationship

Road segment utilization

Mean distance to PT stops from the start for these e-scooter rides:

POLIS CITIES AND REGIONS FOR TRANSPORT INNOVATION

- Bus 120m.
- Tram 326m.
- Metro 683m.
- Train 953m.

Fraction of rides whitout PT alternative

- Ride start per 50m hexagon
- Cut: >25 rides per hexagon
- Mostly inside the "central zone"

Usage overview from survey

- . Scooters used as main transport mode
 - To some extent used for access/egress for bus, metro and train
 - for the whole trip
 - Users say PT could substitute e-scooters on 25-40% of trips where e-scooters are the main mode of transport.

Conclusions

- Both compete with and complement PT
- Where e-scooters are chosen over PT, they offer a much better service in terms of relative travel times
- 20 percent of e-scooter trips are made in combination with PT
 - Usually with PT being the main mode of transport
- E-scooters are welfare increasing – and serve (geographic and demographic) segments that are difficult to target by PT

27-28 NOVEMBER 2024

KARLSRUHE (DE)

For more information:

Nils Fearnley naf@toi.no Espen Johnsson ejo@toi.no

Baden-Württemberg Ministry of Transport

Learnings from the shared micromobility sector

A blueprint for public-private integration?

November 28th 2024

What is a shared micromobility service?

Asset heavy

Ops-focussed

Low margin

💡 Just like public transport 踝

We've seen different waves of shared micromobility services in cities

2000s

Private investments by advertising companies

~2010-

Public investments by cities and PTAs in equipment and services

2017-

Private investments by new mobility operators

Today we see a mix of all these services in our cities

MARKET EVOLUTION

Great for users:

- More choices
- More available vehicles
- Much improved UX

Great for cities:

- More services for same public budgets
- Amplified public transport systems

Source: Fluctuo (2024) EU Shared Mobility Barometer MARKET EVOLUTION 2020-2023

EU27 + UK, NORWAY & SWITZERLAND

MODAL BREAKDOWN (2023)

⁽¹⁾ Average (+/-10% variation due to seasonality) ⁽²⁾ VAT included

Annual Review 202355

But the current governance for shared micromobility limits success

Discriminating practices

Lengthy and inefficient tender procedures

Local fragmentation

B2C services started on a wrong foot

Ingredients of failure:

- Very aggressive deployments by Uber-like startups
- Billions of venture capital money
- Unproven technology
- Inferior vehicles
- No regulation
- Platform approach relying on the gig economy

Things have changed, and in 2024 the industry is at a crossroad

No more private money

Proven user Love

400M+ rides / year⁽¹⁾

40M+ riders / year⁽¹⁾

90% positive user rating⁽²⁾

⁽¹⁾ aggregated dockless bike and scooter trips in Europe based on Fluctuo 2024 ⁽²⁾ TIER-Dott data, end-of-ride rating by users

Better vehicles & tech

5+ years lifespan

Mature geolocation technology

Built for Purpose

Better regulation

Traffic laws

Speed calming measures

Licences & tenders

Better infrastructure

Dedicated parking areas

Use existing bike racks

More and safer bike lanes

Reassuring safety data⁽¹⁾

-44% -26% 3.3

Accident rates '23 vs '22 Casualty risk

Injuries/Mio km (3.9 for shared e-bikes)

⁽¹⁾ OECD-ITF (2024), based on MMfE data, validated by NTUA

At TIER-Dott, we're writing a new chapter, building a European Champion for shared mobility

Company mission:

Change mobility for good, together

What it means for cities:

TIER-Dott is the responsible

city partner, amplifying public transportation with local micro mobility solutions, well integrated in your city.

Our service: Safe, Useful, Sustainable, with a unique approach to parking management.

Working together with cities: responsible solutions, pro-active regulation, acting transparently

A good partnership model is based on cities' and shared mobility operators' aligned visions

Decarbonising the transport system

Reducing car dependency & modal split Affordable and accessible for everyone

A new governance approach is needed

Focus on the outcome, not the inputs

Create a coherent policy framework for all services Incentivise positive outcomes

Thank You!

Sebastian Schlebusch Head of Market Development sebastian.schlebusch@ridedot\com

27-28 NOVEMBER 2024

KARLSRUHE (DE)

Baden-Württemberg Ministry of Transport

© MINISTRY OF TRANSPORT BADEN-WÜRTTEM

ARTHUR

Are micro- and shared- mobility solutions contributing to improving the mobility system?

28 November 2024

Vadim Panarin, Arthur D. Little

The presentation is based on findings from the fifth edition of our Future of Mobility study

By New Mobility, we mean Micromobility, Shared, and Ondemand services

Today's presentation consists of 3 parts

ARTHURELITTLE

CONTEXT

Overall, volumes in key New Mobility segments continue to grow

POLIS

Source: Flucto European Shared Mobility Annual Review (2023), Statista (2023)

ARTHURELITTLE
New Mobility services remain a small phenomenon, accounting for only about 3% of the shared mobility modal split

Sources: PT – UITP, Shared scooters, bikes, cars, mopeds – Shared Mobility Index, Ride-hailing - estimation **ARTHUR PLITTLE**

In this context, coming to the main question

In this context, coming to the main question

Are New mobility solutions contributing to improving the mobility system?

Proxy

To what extent do they impact the decision to keep or give up a personal car?

ARTHURELITTLE

We asked people across the globe would they consider giving up their own cars given transport services available today

ARTHUR

Among major economies, China has the biggest and growing share of citizens that may consider demotorizing

POLIS CITIES AND REGIONS FOR TRANSPORT INNOVATION Source: ADL Future of Mobility Worldwide study 2023 Note: Global and European values weighted by population of markets included

Would not give up own car **ARTHUR**

Next, we focused specifically on New Mobility in large European cities

ARTHUR LITTLE

Car-sharing and ride-sharing seem to be superior in terms of their impact on people's readiness to give up personal car

ARTHUR LITTLE

Usage of multiple New Mobility services positively impacts Readiness to give up personal car

ARTHUR

Implications & Recommendations

New Mobility has its role to play in improving the modal split and is an important part of the solution to current mobility issues

Transport authorities should cultivate new mobility as part of their menu and foster partnerships with new MSPs by

Carefully calibrating support structures for different mobility options (not only bike sharing)

Taking a greater interest in "ecosystem play" (not only focus on regulating)

Operators should position themselves as team players in the mobility ecosystem:

Collaborating with transport authorities to codesign innovative support mechanisms (e.g., micro-subsidies)

Integrating as much as possible with public transport and other transportation modes, (via mobility hubs, MaaS)

ARTHUR

Thank you for your attention!

27-28 NOVEMBER 2024

KARLSRUHE (DE)

For more information:

Vadim Panarin

Principal

Panarin.vadim@adlittle.com

+994 51 884 52 17, +32 492 37 34 06

Baden-Württemberg Ministry of Transport

Shared bicycles: Why and how?

Lessons from 9 use cases 8 European cities 27-11-2024 9.00 – 11.15

Bruno Van Zeebroeck - Transport & Mobility Leuven Benoit Beroud - Mobiped

Should Brussels Region reinvest in a public shared bicycle system in 2026?

Figure 7: Trips/contractually stipulated bike/day in 20 European cities in 11 countries in 2022

Selection of 6 out of all cities with more than 1000 bicycles shared bicycle systems

╋

2 Long term rental systems

Why, What's your objective?

- If a public authority would invest in a public bicycle sharing system, what would be the most reasonable objective (valuable and reachable)?
 - Modal shift away from car
 - Bicycle accessible for everybody
 - Develop multimodal practices
 - Stronger Public Transport
 - Get cycle dynamics starting off
 - Make (shared) bicycles visible and a topic of discussion

Why, What's your objective?

• If a public authority would invest in a public bicycle sharing system, what would be a reasonable objective?

Potential objective		Fact check	Effective mean
Modal shift away from car	$\overline{\bigcirc}$	Neglectable carkm avoided, slight impact on car possession	Change space allocation
Bicycle accessible for everybody	$\overline{\mathbf{O}}$	Access in theory - if payment procedure allows In practice mainly higher educated (male) users	Targeted actions-coaching Safe cycling conditions
Develop multimodal practices	☺ ☺	Yes, for users	
Stronger Public Transport	•	Yes, parallel -complementary *Shared bicycle = 1% of PT trips	Most effective?
Get cycle dynamics starting off	\bigcirc	Yes, Paris start, high share of public bicycles - 40%- among cyclists	Most effective?
Make (shared) bicycles a positive political topic of discussion	\odot	YES, visible and easy Difficult to withdraw	

What's your objective? Lessons learned

- System objectives are monitored
 - Cycle use turnover
 - Cycle availability
 - ...

 Mobility objectives not clear/monitored

@Mobiped 2024

What's your budget?

Figure 37: Regional cycling budget versus bicycle trips

Brussels expected PB budget

- Enormous compared to bicycle budget
- Peanuts compared to car
- Peanuts compared to Public Transport

Cycling policy 2030 (€ 2023) 2022 Annual budget 8% 46% 46% **Bicycle trips** 95% 1.5% 3.5% 2030

LTR

PB

Figure 38: Regional mobility budget share in 2022

LTR 💑 3 M€ Average annual estimates in 2030, without user PB ക 16 M€ revenues (€ 2023) 2022 annual budget Cycling policy 3 16 M€ Road network 📾 184 M € Public Transport 🗔 1.115

You go for PB! (objectives and € are fine) Pay attention to the enablers

- Public service
- Dense network
- Quality bicycle (electric)
- Engaged provider/operator with sufficient resources
- Station based
- Easy going client experience
- Visible identity
- Transition management
- Monitor the system

Public System

- Long Term presence guaranteed
- Solid transparent financing
 - Avoid publicity
- (Subsidized) Private systems:
 - cheaper,
 - no long-term guarantee

Dense network

Figure 10: 150 m (white) and 300 m (blue) catchment areas around PB stations - Single map scale

5 10 15 20 km

A quality bicycle

- A quality bicycle
- Probably Electric
 - Gamechanger
 - (no mix)
- Well maintained (resources)

Engaged provider – sufficient budget

- Engaged provider with sufficient budget
 - Thinking bicycle, not publicity
- Competitive procedure risk
 - Promised more than feasible
 - Marseille Paris -Antwerp region

Charging station based

- Large majority of stations charging
- **Free floating
 - Battery swap higher operational cost
 - Hard to respect drop zones public space disorder

Easy going

• Apps

- Payment systems?
- Inclusive?

	Pour les usages occasionnels V-LIBRE O€/mois		Pour les usages réguliers en Vélib' mécanique V-PLUS 3,10€/meis en tarif standard		Pour les usages réguliers en Vélib' électrique V-MAX 9,30 € / mois en tarif standard	
MÉCANIQUE						
	0-30 min 1€	au-delā 1€/30 min	0-30 min gratuit	au-delà 1€/30 min	0-60 min gratuit	au-delà 1€/30 min
TRIQUE	0-45 min 3€	au-delā 2€/30 min	0-45 min 2€	au-delà 2€/30 min	0-45 min 2 premiers trajets gratuits par jour puis 26/trajet à partir du 3* trajet journalier (45 minutes)	au-delà 2€/30 min

ABONNEMENTS LONGUE DURÉE - GRILLE TARIFAIRE VÉLIB' MÉTROPOLE APPLICABLE À PARTIR DU 14 MAI 2023

PRICING

One trip: single rate | Subscription: full rate or solidarity rate Usage: $0 \in \text{for } 30/60 \min + ... \in /h | Pre-authorised debit: ... \in$

Visibility - Identity

Transition management

- Take enough time
 - Paris

- Marseille
- Madrid
- Antwerp Region

Monitor the system

	Figure	13: Categories of Key Performance Indicators (KPIs)	
Topic	Туре	Purpose	
Public policies	KPI	Translate the public investment political ambition, with a view to evaluating and improving public policy.	
Contractual	KPI	Incentivise the delivery of a high-performance service by distinguishing between resources/results and penalties/remuneration to specify the amounts paid. They are extremely precise, limited in number and can have an indirect impact on other sub-indicators. They can be discussed with candidates during the selection process.	
Quality of service	PI	Improve user satisfaction and the service's image. These criteria can be ranked in order of perceived service quality.	
Knowledge	PI	Conduct studies to understand how the service works.	
Communication	\mathbf{PI}	Communicate with the public.	

Inform you 🙂

Lots of documents available

https://www.mobiped.com/en/refere nces/fiches missions/future-of-thebrussels-public-bicycles-service/

https://mobilitemobiliteit.brussels/en/news/whichfuture-for-bike-sharing-in-brussels

https://www.tmleuven.be/en/project/ Benchmarkingsharedbikes

THE VILLO! BRUSSELS' PUBLIC BICYCLES SERVICE ENDS IN 2026. WHAT'S NEXT?

AN APPLIED-RESEARCH BENCHMARK, OPPORTUNITY AND FEASIBILITY STUDY

"An outstanding must-read study

Peter DALOS Directorate Advisor I BKK Centre for Budapest Transport

Matthieu FIERLING Study & expertise manager SAVM | Paris Vélib' Authority

SEMANTICS Access to a bike

Public bicycles | Private shared e-bikes Charging | Parking

PERFORMANCE COMPARISON Cycling | Public bicycles | Public transport E-bikes | Pedal bikes Free-floating | Dockbased | e-scooters

END-USERS PERSPECTIVES Target groups unable to access a bicycle Design for All approach Integration within public transport

BUDGET

Carbon footprint | Societal balance sheet Financial ratios Modal comparison

SCENARIO PROSPECTION

Long-term rental | Bike sharing Private e-shared bikes | Public Bicycles Dropzones | Charging docking station

GOVERNANCE

Public service criteria | Market failures Public objectives | Contractual KPIs Public transport operator implication

SHARED BIKES MARKET TRENDS 78 p

100+ players talks: experts, cities, providers 50+ litterature review 30+ cities visited in 9 European countries

В **PUBLIC BICYCLES INTERNATIONAL BENCHMARK 88 p** 20 EU cities overview

7 public bicycles services benchmarked Antwerpen City | Antwerpen Region | Brussels Budapest | Madrid | Marseille | Paris 2 long-term cycle rental focused Ghent | Paris Region

(C) **ASSESSMENT, SCENARIOS & RECOMMENDATIONS 122 p**

5 scenarios exploration 7P user-oriented marketing mix 3 public transport operator implication options

Ø SYNTHESIS 30 p

Seperated reports https://mobilite-mobiliteit.brus-sels/en/news/which-future-for-bike-sharing-in-brussels

Compiled report https://www.mobiped.com/en/references/fiches_missions/future-of-the-brussels-public-bicycles-service/

European Union

NextGenerationEL

Thank you for your attention!

For more information:

Benoit Beroud

benoit.beroud@mobiped.com

Bruno Van Zeebroeck

bruno.vanzeebroeck@tmleuven.be

27-28 NOVEMBER 2024

KARLSRUHE (DE)

Baden-Württemberg Ministry of Transport

27-28 NOVEMBER 2024

KARLSRUHE (DE)

Baden-Württemberg Ministry of Transport

© MINISTRY OF TRANSPORT BADEN-WÜRTTEM

Why do e-scooter riders ride on pavements? The role of Computer Vision to help cities better understand the rider-infrastructure gap

Andrew Fleury, CEO & Co-Founder, Luna Systems

ERRANT RIDER BEHAVIORS CONTINUE TO POSE A SIGNIFICANT CHALLENGE

Sidewalk riding

Disorderly parking

Collisions

Micromobility's seat belt moment.
WHAT AI CAN "SEE"

Pedestrian count & speed

Privacy by design- Facial & license plate blurring

Location data

POLIS ANNUAL CONFERENCE 2024

1. HOW THIS DATA HELPS OPERATORS

The key metrics:

1.Location & duration2.Speed3.Number of pedestrians

COMPLETE ACTIONABLE DATA

VISUAL CONFIRMATION

CONFIDENT ENGAGEMENT WITH RIDERS ABOUT THEIR CHOICES...

2. HOW THIS DATA CAN HELP CITIES

City analysis of sidewalk riding

dott

WE ANALYSED FIVE CITIES: GRENOBLE, LYON, BRUSSELS, TEL AIV, LONDON

SCOOTERS SPEND MOST OF THE TIME ON THE CORRECT LANE TYPE

CITY COMPARISONS

Frequency of sidewalk riding events per city analysed to date

Number of events per ride

WHERE IT HAPPENS MOST FREQUENTL

Ye pinpointed every sidewalk riding event, mapping them by:

location
root cause
speed

THE CAUSES OF SIDEWALK RIDING: INFRASTRUCTURE VERSUS "RIDER CHOICE"

DEEP DIVE OF INFRASTRUCTURE ROOT

KEY TAKEAWAYS

Uno

1. Sidewalk riding - strongly related to infrastructure.

2. Computer vision helps cities determine where risk hotspots are located and why.

3. When infraction is rider-led communication, mitigation is possible with data & visual proof.

4. Computer vision can provide a bridge between operators & cities in the conversation on safety.

5. Unlocks a privacy-sensitive, crowd-sourced vision data source for cities for infrastructure planning, smart city use cases.

27-28 NOVEMBER 2024

KARLSRUHE (DE)

Baden-Württemberg Ministry of Transport

THANK YOU

© MINISTRY OF TRANSPORT BADEN-WÜRTTEMB

27-28 NOVEMBER 2024

KARLSRUHE (DE)

Baden-Württemberg Ministry of Transport

© MINISTRY OF TRANSPORT BADEN-WÜRTTEM

Shared Micro Mobility: The correlation between good parking behaviour and new shared micro mobility infrastructure 09:00 AM - 11:15 AM 28 November 2024

Anna Montasser, Lime Michael Wenzl, City of Munich

The challenge of ensuring good parking behaviour

Research

Shared Scooter Parking: The Role of Parking Density and Land Use in Compliance and Demand

Sian Meng - Urbanism Next/University of Oregon Prof. Anne Brown - Urbanism Next/University of Oregon Prof. Nicholas Klein - Cornell University Dr. Calvin Thigpen - Lime Brandon Haydu - Lime

Provide sufficient parking density

25 corrals/km2 or a 1 minute walk.

Examples:

Berlin, Germany

Brussels, Belgium

Rotterdam, NL

Improvement of the parking situation in Munich: Parking Spaces and Geofencing

Old town scooter parking

GEO PORTAL MÜNCHEN Open Geodata

Parking spaces and virtual no-parking zone in Munich's historic city centre

Problems

- Old town area with many conflicts of use due to heavy pedestrian traffic
- chaotic parking of e-scooters

Measures

- Identification of problems with a heat map on parking and tracking of citizen complaints
- Creation of 40 parking spaces through rededication of car parking spaces
- No parking zone within the old town via geofencing

Old town scooter parking

Source: City of Munich / Department of Mobility

Effects of the measures

- Improved road safety thanks to better parking facilities
- Well accepted by users, tradespeople and local politicians
- Significantly fewer complaints from neighbours
- Scientific survey shows public acceptance
 <u>https://muenchenunterwegs.de/news/e-</u>
 <u>tretroller-abstellflaechen-umfrage-bestaetigt-akzeptanz</u>

Improvement of the parking situation

E-scooter parking processes 2021

E-scooter parking processes 2023

Next steps and Goals

Next steps

- City-wide expansion of 675 parking spaces for micromobility by 2026
- No-parking zones with geofencing around the parking spaces

Goals

- Improving the parking situation
- Promoting road safety, especially for pedestrians
- Increasing public acceptance of micromobility

Parking Spaces for Micromobility– Examples

Briennerstraße

Westenriederstraße ost

Westenriederstraße west

Source: City of Munich / Department of Construction

Thank you for your attention!

27-28 NOVEMBER 2024

KARLSRUHE (DE)

For more information:

Anna Montasser – Lime

anna.montasser@li.me

Michael Wenzl – City of Munich

m.wenzl@muenchen.de

Baden-Württemberg Ministry of Transport

Polis Conference 2024

ParkedByMe Revolutionising micromobility through correct parking

Welmoed Neijmeijer, on behalf of:

Co-owned by

28-11-2024

About SparkPark

SparkPark's **mission** is to:

Enhance the liveability of urban spaces. We want to create a Happy City® where resources and space are shared, and safety and sustainability are prioritized.

How do we do this?

- Addressing the "last mile" of a shared mobility journey
- Happy City, [®] our patented and reliable digital parking system

Let's talk about the elephant in the room

Foto: Boris Buchholz

Empowering shared micromobility for safer cities

Features:

- **Turn-key solution** from installation to maintenance to monitoring (PAAS)
- Bluetooth technology compatible with all existing fleets
- Centimeter-level precision
- High autonomy battery & charging with **solar panel**
- Wireless, LTE connection to the cloud-based system
- No installation on the ground is required
- Simple API system integration

Happy City[®] installed in Madrid

ParkedByMe: Madrid (ES)

Facts

- 25 locations in the city center
- Duration: 12 months
 - 4 weeks testing
- Alignment with Madrid 360 strategy
- Our partners:
 - Madrid City Council
 - Factual Consulting

What went well?

- Building relationship with the city
- Initial positive response from Dott-Tier
- Interest from BiciMAD

Learnings

- Placement of sensors without poles present
- Operators not inclined to cooperate

Madrid moves to ban app-rented escooters over safety concerns

Lime, Dott and Tier Mobility licences to be cancelled from October due to issues with circulation and parking

ParkedByMe: Prague (CZ)

Facts

- 25 locations in the city center
 - 989 parking actions
- Duration: 12 months
 - Testing with operator: 4 weeks
- Our partners:
 - City of Prague (Prague 7)
 - PowerHUB

What went well?

- Installation and calibration sensors
- Integration #KolemPlzn, local bikeshare operator
- Testing led to deployment of 12m wide parking spot

Learnings

 Local operators not inclined to cooperate

ParkedByMe: Prague (CZ) - data

Comparison of Bluetooth vs. GPS positioning accuracy in parking of shared bicycles – Preliminary Results from Selected Days

Date	Number of rides	SparkPark Bluetooth	GPS parking success
		parking success rate	rate
23 October	24	98.5 %	63.5 %
31 October	18	100 %	67 %
6 November	24	100 %	30 %

43-52%

of local operators' vehicles are

parked outside designated areas

Warsaw (PL)

Large-scale roll-out of SparkPark Happy City

- 20 parking locations installed
- Ramp up to 350 parking locations in Q1 '25
- Together with NextBike
- Objective of the cooperation:
 - Correct and safe parking
 - Side-benefit: more efficient operations

Conclusion

1. HappyCity ensures that micromobility vehicles are **parked in** dedicated parking bays 98.5% of the time.

2. Cooperation between different actors is key to create a flourishing **sustainable transport ecosystem**. Cities need support from all parties to realise this.

3. When creating **local regulations**, cities need to include **provisions on cooperation** with third party service providers selected by the city.

QUESTIONS?

Reach out to: post@sparkpark.no

Visit our webpage: https://www.sparkpark.no

and let's connect on LinkedIn!