VERA. Quantifying the shifting effects of newly built or improved cycling facilities

POLIS Conference, 27th-28th November 2024 Dr. Martin Loidl – Paris Lodron University Salzburg (PLUS)

Bundesministerium für Digitales und Verkehr **Bundesministerium** Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Bundesamt für Strassen ASTRA

MANA

Mode shift 🚦 Route shift

Effect size

Environmental effects

Input for planning

Reference for evaluation

VERA Approach

Guidline for estimating effects of interventions

Interdependences

- Literature review
 - 51 eligable papers
 - 25 newly built facilities, 11 extensions, 15 comprehensive extension and optimization projects
 - 7 studies from Europe, mostly from USA, UK, CAN
 - Cycling volume at the place of implementation as most oftenly measured effect

Consultation of experts

- Online survey
- 169 partly and 132 entirely finished
- Main target group / participants: public administration
- Experience and expert assessment as the primary evaluation method

Literature Analysis

Empirical Model: Effect Sizes

- Level of detail: microscopic (intervention), mesoscopic (environment of intervention)
- Input for estimation model:
 - Demand data (cycling trajectories from different sources)

	Austria	Switzerland	Germany
Source	Österreich radelt zur Arbeit	Strava	Stadtradeln
Device	Smartphone (GNSS)	Smartphone (GNSS)	Smartphone (GNSS)
Geographical Coverage	Vienna	Zurich	Germany
Temporal Coverage	2013 – 2016	2019 – 2023	2018 – 2020, 2022 – 2023
Acquisition	Entire year	Entire year	3 weeks (slot for different towns)
Temporal Aggregation	Monthly	Monthly	Yearly
Map-Matching	OSM	OSM	OSM

- Type of intervention
- Street infrastructur (graph), demography, variable for fixed effect (ZIP, city, year, OSM-ID of segment)

Effect Size Estimation

Maßnahmenkategorie	β	
Ausbau des Radwegenetzes	1.366+ (0,244)	
Belagsanierung	1.480** (0,209)	
Markierung von Radverkehrsanlagen	1.359 (0,345)	
Neubau Radweg	1. 720*** (0,275)	
Öffnung von Einbahnstraßen	1.561** (0,248)	
.theta	290.8%***	
.theta	(204.860<)	
NumObs	696022	
R2	0.295	
R2 Adj.	0.238	
R2 Within	0.204	
R2 Within Adj.	0.204	
AC	5902595.5	
BC	8456564.8	

 Fahrradstraße Dresden-Ok

 Marine J

 L üster of high values

 L üster of high values

Estimation of effect of different types of interventions for entire DACH-region.

*** $p \le .001$ ** $p \le .01$ * $p \le .05 + p \le .1$

Guideline

- Data-efficient, low-level estimation of shifting effects of interventions
- Target group:
 - Decision makers and planners in municipalities
 - Consultants and planning companies
 - Scientific institutions
 - National and regional administration (funding / subsidies)
- Four main steps:
 - Determination of bicycle traffic volume » Shifting potential of the intervention » Estimation of the shift effect » Estimation of the environmental effect
- Excel template for simple model application

Guideline

Conclusion

- Effect of single interventions
 - Hard to isolate and determine » challenge for transferability
- Documentation of interventions
 - Many municipalities do not document their projects in machine readable formats
- Data generation and accessibility
 - Trajectories, counting data, mobility surveys
- Evaluation of interventions as default
 - Mostly only post-hoc measurements
- Guideline as support for evidence-based approaches
 - Planning and monitoring

The research project VERA was commissioned by the Austrian Research Funding Agency (FFG, project number F0999897371). The responsibility for the research program D-A-CHVerkehrsinfrastrukturforschung lies with Bundesministerium für Digitales und Verkehr (BMDV), Bundesministerium für Klimaschutz (BMK) and Bundesamt für Strassen (ASTRA).

Research in VERA is collaboratively conducted by:

HERRY Consult GmbH

Paris Lodron University Salzburg, Department of Geoinformatics Project coordination – Dr. Martin Loidl, martin.loidl@plus.ac.at

Technical University Dresden, Chair for Transport Ecology Dr. Sven Lißner, sven lissner@tu-dresden.de

EEP Schweiz AG (as sub-contractor) Dr. Ralph Straumann, ralph.straumann@ebp.ch

Mag. Rupert Tomschy, tomschy@herry.at

