Sample, data and empirical approach $_{\rm OOOOOO}$

Results

Takeaways 00000

Do shared e-scooter services cause traffic accidents? Evidence from six European countries *Cannon Cloud*¹, *Simon HeB*² and Johannes Kasinger³

¹Cannon Cloud: Goethe University, cloud@econ.uni-frankfurt.de
 ²Simon Heß: University of Vienna, simon.hess@univie.ac.at
 ³Johannes Kasinger: Goethe University, kasinger@safe-frankfurt.de

Results 000000 Takeaways 00000

Findings

- Introduction of shared e-scooter services causes an 8% increase in monthly accidents with injuries.
- 2 No effect on cities with more bike lanes.
- Ocities vary in capacity to safely increase the modal share of micro-mobility users.

Results 000000

Motivation

- Accidents are expensive and a deterrent.
- Introduction of shared e-scooter services uniquely identifiable shock increase to micromobility mobile share.
- Pan-European Master Plan for Cycling aims to increase modal share.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Data: Shared e-scooter service launch date

- All 93 cities in 6 European Countries.
- Quasi-random staggered treatment, Jan 2018-Jun 2021.

Outcome data: Traffic accidents with personal injury

- Monthly city police reported accidents.
- Must involve a moving vehicle and personal injuries.

Figure: Monthly city accidents over time

Sample, data and empirical approach ${\scriptstyle OO \bullet OOO}$

Results 000000 Takeaways

Outcome data: Traffic accidents with personal injury

Benefits of looking at all accidents:

- Estimates incorporate substitution effects.
- Not all e-scooter accidents result in an injured e-scooter user.
- Little/low quality data on e-scooter accidents.

Treatment definition

- Binary treatment variable for months after shared e-scooter roll-out.
- Treatment status is permanent.
- Estimates average effect for all months after roll-out.

Results 000000

用借

Empirical setup

- Causal identification strategy: Staggered difference-in-difference.
- Later treated and never-treated cities serve as controls.
- Key assumptions: Parallel trends, no anticipation.

Testing parallel trends

Figure: Placebo tests using treatment dates shifted by 24 months.

- Shows % change in accidents relative to treatment month.
- No indication of differential trends 3 years from introduction.

Main results

Introduction of shared e-scooter services cause an 8% increase in monthly accidents with injuries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results 0●0000 Takeaways

Falsification and alternative specifications

Winter months: 1.9% increase. Insignificant.
Non-winter months: 11.5% increase.

Results

Takeaways 00000

Falsification and alternative specifications

- First twelve months: 5.3% increase.
- Excluding COVID lockdown: 5.7% increase.

K 818

Heterogeneity analysis

Alte Oper

Splitting the sample at country-median by ...

Eschenheime

- Bike lane density (infrastructure).
- Bicycle modal share (safety in numbers).
- Cars per capita (car dependency).

Untermainbrück

.. and comparing differences in treatment effect.

Results

Takeaways

Heterogeneity analysis: Results

- More bike lanes \Rightarrow no increase in accidents.
- **2** Fewer bike lanes \Rightarrow large increase in accidents.
- Bicycle modal share and cars per capita: No significant difference.

No change in severity of accidents

Figure: Percentage change in accident severity over time

• Reported e-scooter accidents likely just as severe and costly.

Results 000000

DOADA

Takeaways ●0000

Conclusions

We suspect the increase in accidents is driven by e-scooter/automobile conflict because:

- No increase in accidents for cities with more bike lanes.
- No change in accident severity.

Conclusions continued

Some cities are better able to safely increase the modal share of micro-mobility users.

- Cities with higher bike lane density.
- Correlated policies or behaviors could drive effect.

Results 000000

Conclusions continued

- Other cities less prepared to safely increase modal share.
- No evidence to support the Safety in Numbers theory.

Limitations

- No information on unreported e-scooter accidents.
- Not an estimate of marginal effects.

Limitations continued

- Not long-run effects.
- Not a comparative risk assessment of different transport types.
- Cannot say which road users are responsible for accidents.

