

Superpedestrian

\$

- Spun out of the MIT Senseable City Lab at MIT in 2013
- 40+ patents in AI and electrified vehicle technologies
- Superpedestrian scooter fully designed in-house

Operated in 65+ cities since 2020

Promise

The combination of **access, speed,** and **comfort** achieved by linking public transport with micromobility competes with private car transport

Baseline

In Lisbon, 51% of riders regularly use scooters to connect to transit. 65% of riders earning less than median annual income use scooters to connect to transit.

Source: Superpedestrian rider surveys 2022

Local Variables

- (\$)
- S Existing transit options
- C Land use
- S Regulatory frameworks

Street facilities

			+
Door-to-door	Х		Х
Short trips	Х		x
Long trips		Х	x
On your own schedule	X		x
Affordability/ease of payment		Х	Separate fares, different payment
Easy to plan/convenient			Different apps, planning tools
Reliable location		Х	Scooters must be at transit
Spontaneous trips	Х		X

Case Studies

S

- © Global: Maas app integrations (NCTX Buses)
- Seattle, Washington (US): Scoot and Bike to Transit
- Andalucía, Spain: Tarjeta jóven de transporte de Andalucía

Nottingham, UK: Parking stations

MaaS Integrations

Addresses: Convenience, Planning

How: All travel modes in one app for trip planning

Who: Operator

Difficulty: Easier to implement

Impact: Low, with potential for much higher

Scoot and Bike to Transit

Addresses: Affordability, Reliability

How: Wallet bonuses, free transit tickets for parking at transit

Who: Government agency, Operators

Difficulty: High cost, high labor, easy to implement in-app

Impact: Measuring, assumed high

Andalucía Discount

Addresses: Affordability

How: 20% scooter discount for youth with transit card

Who: Operator

Difficulty: Easier to implement

Impact: Medium

Parking Infrastructure

Addresses: Reliability

How: Stations create consistency at transit

Who: Operator

Difficulty: High

Impact: High

Future

Affordability and Convenience

Fare integration

Upgrading MaaS with deeper integration

S

Reliability

\$

- S Optimizing operation zones and hours Plan into the city as essential transport
- S Financial viability for the future

