



# CleanMobilEnergy Project

DECEMBER 2021







#### Partners









### Project objective

- CleanMobilEnergy aims to reduce greenhouse gas emissions in cities by combining renewable energy sources energy storage and the charging of EV's using a innovative energy management system (iEMS).
- Critical themes for the iEMS are:
- 1. Interoperability
- 2. Scalability
- 3. Integrating monitoring and control of multiple devices



### 



### CleanMobilEnergy Main Goals



To better balance energy demand (EVs) and RES supply, using EV's and innovative local solutions for temporary storage of RES.

This way:

- 1) CO2-emissions will be minimised,
- 2) the threat of an expanding EV-fleet is turned into an opportunity (temporary storage and large consumption),
- 3) expensive grid reinforcements are avoided,
- 4) Combined business case for RES and EV-charging become profitable, encouraging future rollout.
- 5) Collect and store data that can be used for evidence and business transactions (accounting). Validated (trustworthy), reliable source of data.
- 6) Share and visualise the data to influence energy consumption behaviours.
- 7) Data to enable/improve forecasting of consumption/generation at local level.
- 8) Develop+test a communication protocol to allow diverse components to be connected to an EMS.
- 9) Support future procurements by identifying essential requirements for a CME system.



Arnhem

### City pilots





The City Pilots in CleanMobilEnergy will act as launching pads - test-beds for implementation and improvement of the system in diverse environments:

# Stuttgart

Nottingham

### Schwäbisch Gmünd

- user groups
- city-situations
- supply/demand profiles
- regulatory systems
- energy markets





#### Pilot example – Arnhem

#### **EV charging Arnhem**

Solar farm (14MW)

#### Harbour (Cold ironing)



ENERGIEMANAGEMENT-SYSTEEM (EMS)

#### Storage 0.5MWh







## Interoperable Energy Management System

BACKBONE OF THE CME PROJECT AND OF DECENTRALIZED ENERGY PRODUCTION AND CONSUMPTION

### 













#### Energy management









#### Open source iEMS for others



A multi-stakeholder system requires a controller:

- with real-time access to flexible components
- which controls or suggests actions for participants
- with access to flexibility markets
- who processes the financial transactions
- who fulfils the needs of all participants
- with clear benefits for all stakeholders
- Easy to adapt and implement (open source)

#### Neighbourhood Energy System





#### Governance

- > Two cases: behind the meter or through the grid
- >Behind the meter: interventions are possible (Nottingham, Stuttgart)
- >Through the grid: only suggestions are possible (Arnhem)
- ≻City Pilot Arnhem: multiple stake holders, grid, who is in "charge"?
- ➢ Public authority is no longer willing to intervene, only facilitates.. So who is next?





#### Lessons learned

- Cable pooling is difficult: to share responsibility between different owners (wind and solar)
- Sharing a grid connection: make sure a contract is signed before operation....what costs are included?
- All parties should be partners: beggars can't be chosers
- Governance!





#### Thank you – any Questions?

#### For more information, visit:

http://www.nweurope.eu/cleanmobilenergy

**Or contact Peter Swart** 

Peter.swart@arnhem.nl



### Extra slides



#### New projects for iEMS

Neighbourhood energy system plus battery

Solar carport with charging and building



#### Schwäbisch Gmünd





#### Stuttgart



#### PURITELUKE SCHETS ZONNEVELD KONINGSPLEU NOORD





Head-alte an excitive homogeneous discus. Automatica



#### System components in Arnhem City Pilot

> 14 MW solar field, which might link to the wind generation in the future,

- > 0.5 MWh **storage** with Li Fe PO4 batteries,
- > Various Allego's **charging points** in the city to be included,
- > A dock in **Arnhem harbour** for cruise maintenance (**cold-ironing**),
- > Existing grid to be connected to the system



#### System functionalities in Arnhem City Pilot

#### > Forecasting

- Solar generation forecast based on the upcoming weather condition and PV capacity,
- Demand forecast in the harbor and EV charging points
- Energy flow and amount for storage forecast, amount going to/from the grid

