EXPERIMENTS & TRANSITION

Disruptive mobility unlocking the creation of sustainable metropolises

4A. Disruptive new mobility innovations & fundamental human needs

Speaker: Lucienne Krosse, EIT InnoEnergy

Today

- Transport responsible for 30% GHG emissions
- Demand passenger and freight transport will grow 2.5x by 2050
- Transport infrastructure investments of € 69.000.000.000.000+ are required towards 2050
- Increasing traffic congestion
- Options to extend existing infrastructure are diminishing
- Increasing urbanization and densification
- Lack of affordable housing
- Lack of green/healthy environments within cities

2) Extrapolated from https://outlook.gihub.org/

¹⁾ ITF Transport Outlook 2021 | READ online (oecd-ilibrary.org)

³⁾ https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer

2050

- Europe decarbonized
- Affordable, accessible, liveable sustainable cities / regions
- Travel and transport ' ondemand' available and affordable for everyone
- The option to live anywhere with acceptable commuting times

How? Disrupt the way we travel and transport.

Hyperloop —

What is hyperloop?

First proposed by Elon Musk in 2013 Developed in EU and USA

Aerospace-grade vehicles for passengers and high value cargo

□ In low pressure tubes with effectively zero aerodynamic drag

□ Electro-magnetic propulsion, levitation, guidance and switching

□ Fully automated system: real time dynamic IOT control – Digital from Day 1 -

Every journey non-stop. 'Single click, single seat' trips over dense networks linking multiple origins to multiple destinations over metro-regional, intercity, interregional, and international distances

Faster – Greener –Better - Smarter

- Zero drag enables 700 km/h cruising speed
- 500 km trip city centre to city centre in ~40 min, Same trip takes ~ 3 hours by air including airport access/egress and processing time
- Zero drag enables ultra-low energy consumption; can be 100% renewables powered
- 5 x-∞ greener

FASTER

(0)

-

GREENER

BETTER

SMARTE

- Rail-like capacity, tram-like convenience, plane-like speed
- Tube eliminates external factors, automation minimizes human errors
- Infrastructure beside/above existing transport corridors minimizes new intrusions landscape
- Arrival prediction to ca. 1 sec
- No physical bending of tracks needed for lane switching (enables high network capacity and allows high speed lane-switching

Network effects hyperloop

- example network -

241 km

Each MetroRegion is assumed to be served by a number of hyperloop terminals on a Network in addition to the Airport hyperloop terminal.

These networks link the urban cores in each MetroRegion.

These illustrations show indicative possible configurations in both the Randstad and the Ruhrgebiet

□Connecting 28+ million people □All trips non-stop and on-demand

Example EuroLoop Network Core Network: 815 km Only Airport-to-Airport links shown for clarity. Core network also directly serves terminals in Additional: 250 km

FRA

DTM

75 km

CGN

142 km

DUS

each MetroRegion

100 km

FIN

99 km

BRU

Small network example

Trip times by hyperloop in minutes between Airports connected by the hyperloop network.

	1	2	3	4	5	6	7	8
	Schiphol	Eindhoven	Dusseldorf	Köln Bonn	Frankfurt	Dortmund	Brussels	Paris CDG
1 Schiphol		10	15	18	26	19	15	28
2 Eindhoven	10		10	13	20	13	10	23
3 Dusseldorf	15	10		7	15	8	15	28
4 Köln Bonn	18	13	7		12	10	18	32
5 Frankfurt	26	20	15	12		18	26	40
6 Dortmund	19	13	8	10	18		19	32
7 Brussels	15	10	15	18	26	19		18
8 Paris CDG	28	23	28	32	40	32	18	

Just replacing short haul flights (high level estimation)

- □ 6,656,643 daily available seat km
- 267,653 tons CO2 emissions avoided per year[1]
- □ 5 M€ air pollution cost per year avoided
- □ 1 M€ noise cost per year avoided
- □ 2704 years total time saving [~ 232 M€]

[1] Assumption powered with 100% renewables

Scenario analyses

- Exceptional high Benefit to Cost ratios
- Sweet spot is 'car-like' pricing: highest economic and environmental impacts
- Freeing up runway capacity airports and roads

Alleviate housing scarcity and soaring housing prices

Thank you!

Do you have any question?

Ask Lucienne Krosse, Lucienne.Krosse@innoenergy.com

