POLIS CITIES AND REGIONS FOR TRANSPORT INNOVATION

regio arnhem nijmegen

Annual Conference 2020

6A: Managing Urban Infrastructures

VIRTUAL EVENT | 30 NOVEMBER-3 DECEMBER 2020

Dynamic Space Management

- insights from the MORE project

Peter Jones, UCL MORE Scientific Co-ordinator

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769276.

This document reflects only the author's view and that the Agency is not responsible for any use that may be made of the information it contains.

The Challenge

- Demands on busier urban streets are increasing, due to:
 - > the emergence of new modal options (e.g. e-scooters)
 - > growing mobility-related sectors (e.g. home deliveries)
 - > a greater interest in pace-related activities
 - population/employment densification
- Kerb & carriageway space is largely fixed so pressures/ conflicts intensify
- How to address this conundrum:
 - > By using street-space more imaginatively, flexibly and dynamically
 - Using LED road signs and road markings

<u>Multimodal Optimisation for Roadspace in Europe</u>

- Identifies existing and future pressures on the main roads in cities that connect the 'Urban Nodes' – and their major attractors (city centre, port, etc.)
 with the national/TEN-T: Trans-European Road Network
- Develops design tools and processes that will enable these key routes to be planned, designed, managed and operated in a way that make them responsive to future pressures, in a flexible manner:
 - Generating innovative design options
 - Engaging stakeholders in street re-design
 - Detailed micro-simulation of behaviour in different street layouts
 - Comprehensive evaluation of design options

Urban Feeder Routes: Mix of 'Roads' and 'Streets'

Figure 173. Location of the accidents occurred between 2015 and 2018, by type of injury (Source: ANSR - Road Safety National Association)

Street as an 'Eco-system'

 Looking at street space allocation holistically, from building to building – not by each use separately – as a comprehensive ecosystem

• Being sufficiently imaginative in considering options for the allocation of urban street space.....

PRIORITIES

Choose from the green dropdown menus the degree of priority of each type of road user or road use

- 0 Can be worse off than now, if needed
- 1 Should not be worse off than now
- 2 Should be better off than now

Choose a maximum of 3 road uses with level 1 Choose a maximum of 3 road uses with level 2

Road user	Road use			
Pedestrians		Walk	0	-
		Cross the road	0	-
		Stroll	0	•
		Sit (street furniture)	0	-
		Sit (outdoor cafe)	0	•
Pedestrians with restricted mobi	lity	Walk	0	•
		Cross the road	0	•
Cyclists		Move	0	•
		Park	0	•
		Rent (dock)	0	-
		Rent (dockless)	0	•
Micromobility users (scooters, sk	ates, etc.)	Move	0	•

Road user	Road use		
Bus drivers		Move	0 🔽
		Stop	0 🔻
Bus Passengers		Interchange	0 🔽
		Wait	0 💌
Rail/metro/bus passen	gers	Interchange	0 💌
Car drivers		Move	0 🔽
		Park	0 -
		Stop	0 🔻
Car share users		Move	0 💌
Motorcyclists		Move	0 💌
Taxi drivers (inc. ride-h	ailing)	Wait	0 -
Taxi passengers (inc. ri	de-hailing)	Wait	0 💌
Goods vehicles		Move	0 -
		Stop	0 💌
Emergency vehicles		Move	0 💌
Service vehicles		Move	0 -

Next

OBJECTIVES

Fill the checkboxes of the objectives the intervention aims to achieve Choose only the main objectives (Maximum of 5)

Movement

- Increase number of trips
- Reduce travel time
- Increase travel time reliability
- Reduce congestion
- Improve trip quality
- Achieve a more sustainable modal split

Place

- Facilitate place activities (e.g. people sitting)
- Facilitate kerbside activities
- Improve access to local buildings

Road operation

Improve resilience (to weather conditions)
Increase flexibility (to different road uses)

Wider objectives: economic

- Reduce costs of transport
- Promote local economy

Wider objectives: social

- Improve traffic safety
- Reduce community severance
- Increase personal security
- Promote physical activity/health
- Promote social interaction
- Promote social inclusion
- Increase wellbeing

Wider objectives: environmental

- Increase green space
- Improve air quality
- Reduce noise
- Improve visual environment
- Protect soil/water and reduce flood risk
- Improve local climate
- Reduce energy consumption
- Improve regional/global environment

COVID: Transforming Street-space Allocation

POSSIBLE ROAD DESIGNS																		Ba	ck Re	start	Next							
City: Lisbon Season: Sprin	Road se	ection: L of week	.isbon_try c Weekday	/ / Tim	e of day:	Morning Pea	ık																		Check one o	r more te	isible opt	ions
Legend		Walking) Mida	Place	ce activities	Green area	General purpose		Bus lane		Cycling		Bus + cycle Parking/ load		king/ loading Tram l		Tram line										
		İ	İİ	,	量	HTHTH	1						e Zianes		÷.	ļ												
		2m	3m	4m	2m	3m	1.5m	3m	óm	3m	бm	2-3n	n 3-4.5m	4m	2.5m	1	3m	6m										
Fill the ch	neckbox	xes of	f all opt	tions y	ou th	ink are fe	easible in	the r	road sub	sectio	on																	
											Total					vidth of	idth of Design Elements (m)					Capacity per 75m ² of roadspace						
Left footwa Fe	y and kerb asible	side	Lef	t carriag	eway		Median	strip		Riq	ght carriagev	vay	Right	t footway ar	nd kerbside	road width (m)	Walkin	Place ¹⁹ activitie	Green es area	Genera purpos	al Bus e lane	Cyclin	Parking ⁹ loading	g/Tram g line	Movement (people)	Place activities (people)	Parking/ loading (vehicles)	Feasible
t			ğ			1	ti	İ	Å Å	F	a (t	27	7	0	15	6	0	4.5	0	6	360	10	0	0
t				}		1	t	İ	*	6					İ	27	7	0	1.5	6	6	4.5	0	0	360	10	0	D
tt			÷5	3		Ť				F	à 🛊				ŤŤ	27	8	0	3	6	5.6	2.4	0	0	350	20	0	8
iii			•	3						6	à 6				ttt	27	8	0	3	6	5.6	2.4	0	0	350	20	0	

VISSIM Modelling development (PTV)

Parking and loading

- Kerbspace efficiency
- Ease of finding space
- Revenues

Pedestrians moving or not moving (place activities)

Dynamic roadspace reallocation

- $\bullet \text{ movement} \to \text{parking}$
- all vehicles \rightarrow bus only

Issue: Turning regulation on its head?

- Current approach: regulate new mode as it becomes 'established' always 'on the back foot'
- Suggested approach: pro-active generic regulation of activities allowed on different parts of the street e.g.:
 - Footway: non-motorised plus electric modes; maximum speed of 8kph (??), audible warning if wheel-based; no lights or protective gear
 - 'Cycle' lane: Wheeled vehicles (motorised and non-motorised) between 8kph and 30kph (??); night time lighting, effective brakes; protective gear recommended; insurance for motorised vehicles
 - Carriageway: All motor vehicles capable of travelling at over 30kph; night lights and protective gear required, effective brakes, plus license, identification and insurance

Issue: LED signing – some challenges

- Allowing for different uses of the same physical space (e.g. kerbside) at undefined times of day – not pre-specified. In some extreme cases, part of a footway might become part of the carriageway at certain times.
- Ensuring that the electronic signs and road markings are correctly operating and are fully visible at all times.
- Determining how to record the traffic regulations in operation at any particular point in time, in a way that is reliable and enforceable.
- Determining how to handle transition periods, from one set of regulations to another; (e.g. for parking switchover period would be set at the maximum allowed parking duration; but for the sudden introduction of a bus lane might find a driver in the 'wrong' lane for a short period of time.

Peter Jones

peter.jones@ucl.ac.uk

www.roadspace.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769276.

This document reflects only the author's view and that the Agency is not responsible for any use that may be made of the information it contains.

