

Clean Mobil Energy Project Introduction

NOVEMBER 2020

Project objective

CleanMobilEnergy aims to reduce greenhouse gas emissions in cities by combining renewable energy sources energy storage and the charging of EV's using a innovative energy management system (iEMS).

Critical themes for the iEMS are:

- 1. Interoperability
- 2. Scalability
- 3. Integrating monitoring and control of multiple devices

Project Partners

Lead Partner

Sub Partner

CleanMobilEnergy Main Components

CleanMobilEnergy main challenge is the transnational development of an interoperable energy management system, iEMS for all cities:

- PV generation
- EV-fleet smart-charging
- Stationary storage
- Multiple flexible and non-flex cityconsumption patterns
- Vehicle 2 Grid-solutions
- Near City Wind-energy generation
- Etc. etc.

City pilots

Arnhem

Nottingham

Schwäbisch Gmünd

The City Pilots in CleanMobilEnergy will act as launching pads - test-beds for implementation and improvement of the system in diverse environments:

- user groups
- city-situations
- supply/demand profiles
- regulatory systems
- energy markets

Pilot example – Arnhem

EV charging Arnhem

Harbour (Cold ironing)

Energy management

Optimalisatie (€ / CO₂)
Prijs of CO₂ optimalisatie
'Eiland' of 'Netwerk' modus
Emergency Demand Response

Opwekking
Geïnstalleerd vermogen

Locatie efficiëntie Opwekking

Voorspelde opwekking

Opslag

Opslag vermogen Genivelleerde opslagkosten (LCOS) Laad of ontlaad vermogen

Energy management

Pilot example – Nottingham

Tamar city depot

Building

Batteries

Governance

- > Two cases: behind the meter or through the grid
- ➤ Behind the meter: interventions are possible
- Through the grid: only suggestions are possible
- City Pilot Arnhem: multiple stake holders, grid who is in "charge"?
- ➤ Public authority is no longer willing to intervene, only facilitates.. So who is next?

Thank you – any Questions?

For more information, visit:

http://www.nweurope.eu/cleanmobilenergy

Or contact Hugo Niesing at

h.niesing@resourcefully.nl

Extra slides

Experience SEEV4-City: Johan Cruijff ArenA

https://amsterdaminnovationarena.com/press/energy-storage-system-launch-29-june-2018/

Nottingham Pilot

Eastcroft depot

Municipal fleet

Arnhem Schwäbisch Gmünd Interreg North-West Europe Pilot

Battery exchange stations

Modular Battery System

LEV's and e-bikes

Arnhem Pilot

ENERGIEMANAGEMENT-SYSTEEM (EMS)

7

Charging plaza

Porous Electrode

Catholyte Tank

Solarfield (10 MW)

Arnhem project brief status

- 2. Connection harbour is making implementation plan
- 3. Arnhem project-team is shaped ...
- 4. Battery storage.....
- 5. EV charging ...
- 4. Individual energy Forecasting, monitoring and management applications ...

:h-West Europe

ınMobilEnergy

System components in Arnhem City Pilot

- > 10 MW solar field, which might link to the wind generation in the future,
- > 0.5-1.0 MWh storage with flow batteries,
- ➤ Various Allego's **charging points** in the city to be included,
- > A dock in **Arnhem harbour** for cruise maintenance (**cold-ironing**),
- > Existing grid to be connected to the system

System functionalities in Arnhem City Pilot

> Forecasting

- Solar generation forecast based on the upcoming weather condition and PV capacity,
- Demand forecast in the harbor and EV charging points
- Energy flow and amount for storage forecast, amount going to/from the grid

