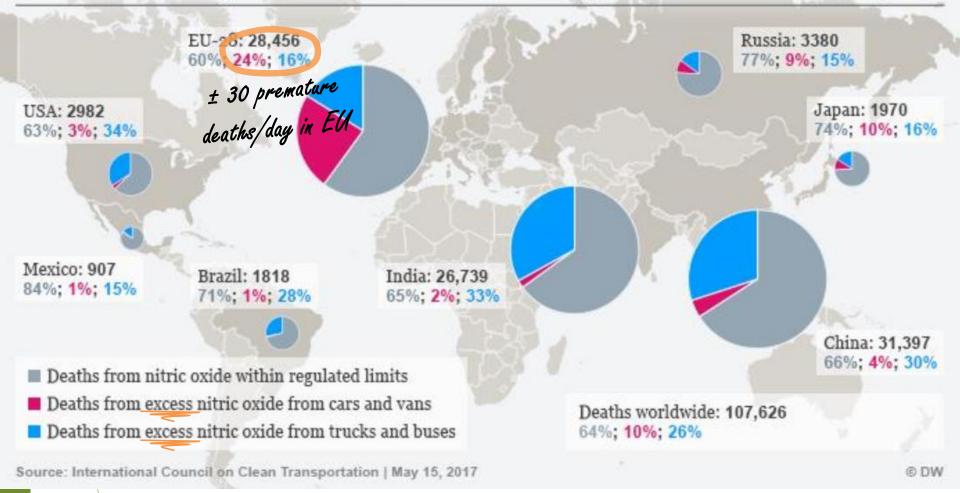


Smoke & Mirrors

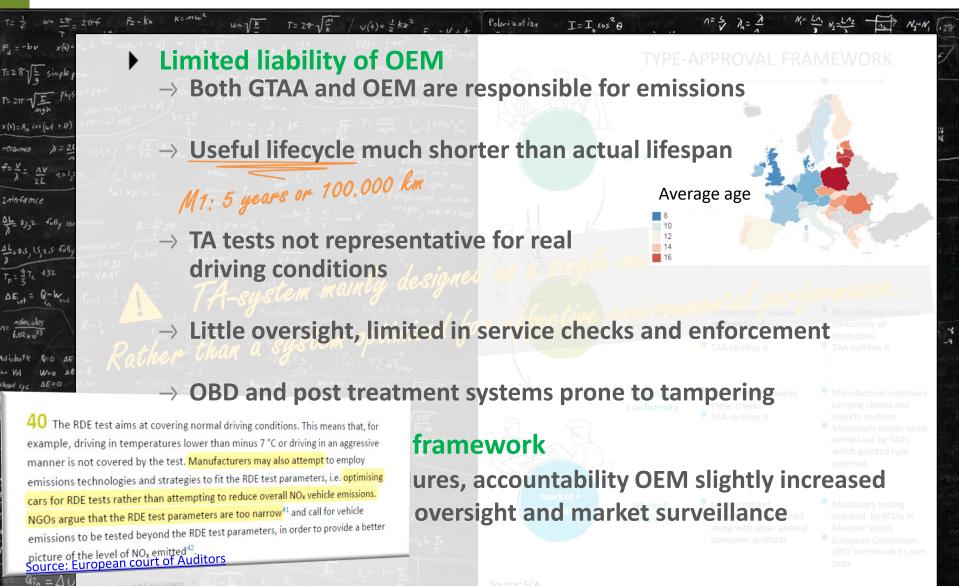
Flanders addressing elevated vehicle emissions in real driving conditions

Contact: Roel Vaneerdeweg: roel.vaneerdeweg@vlaanderen.be



ANNUAL CONFERENC

27-28 November 2019, Brussels


Elevated emissions in real driving conditions

Deaths caused by nitric oxide from diesel engines worldwide in 2015

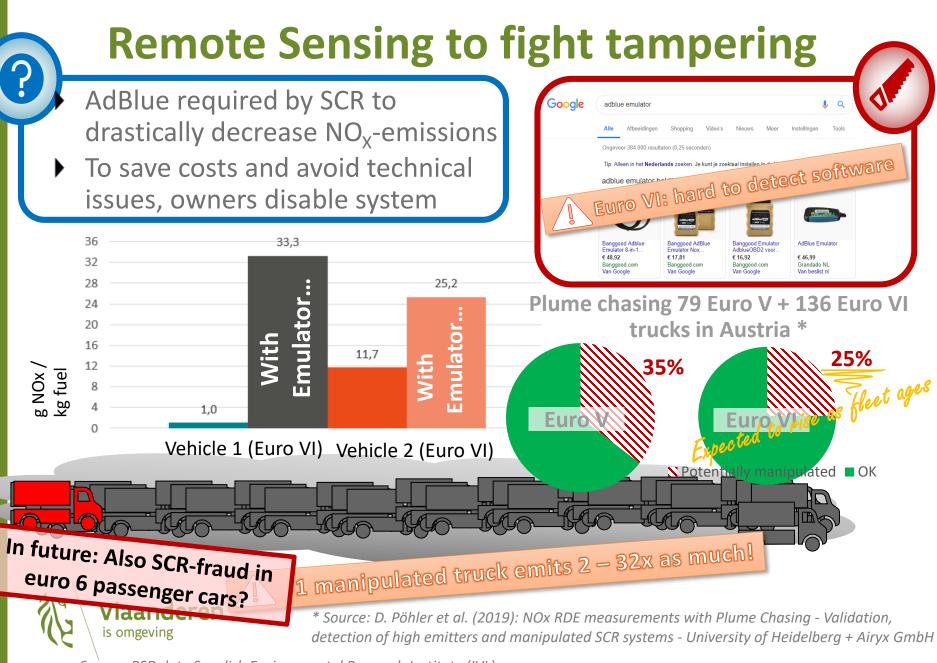
Vlaanderen

Type approval and emission standards

Policy study about elevated emissions

- Part I: Legal support
- Order out of Chaos
- Identify legal 'bottlenecks'
- Specific challenges
 - Call-backs for retrofits
 - Dealing with garage keepers
 - ✓ Analysis legal procedures in EU

🔍 Part III: Data analysis


Combine fleet info with real world emission info
 Develop methodology to prioritize vehicle models

- Part II: policy strategy
 Active role in evaluation TA
 Investigations to collect evidence
 Strengthen PTI
 Fight illegal tampering
 Keep OEM accountable
 - Reduce impact existing fleet

 Part IV: Remote Sensing
 210.000 valid measurements
 2 weeks, 2 RSD's, 5 locations Incl Highways!

Analysis ageing effects Analysis effect WLTP + RDE Assess and detect DPF and <u>Ad Blue fraud</u> RS driven police campaign

Source: RSD data Swedish Environmental Research Institute (IVL)

Ad hoc selection Ad hoc selection Euro V trucks

Detection rate: 9%

Based on field experience

With Inspection software

RS – based selection 37 g Nox / kg fuel (Euro V)

Detection rate: 83%

Eastern + Western EU trucks

Further investigation needed to fine-tune NOx cut-off for both euro V and euro VI

Challenges

Practical challenges

- \rightarrow

Inus, while the broad design of the system is similar, the approval processes and underlying test cycles differ in terms of the authorities responsible, and the test cycles used for determining compliance with emissions standards. In the US the EPA is responsible for all decisions on the conformity of vehicle models with emissions standards. The EPA also has responsibility for the monitoring of vehicle emissions in use, and deploys mandatory testing of vehicles – an issue dealt with in more detail in section 3.7 below. In the EU, however, detailed implementation is left in the hands of the individual Member States, with limited oversight by the European Commission with regard to how, in practice, the standards are applied, and very little in-use monitoring. Moreover, environmental agencies with a direct responsibility for the air quality and greenhouse gas outcomes that the legislation is designed

to achieve have, in most Member States, little or no role in monitoring the effectiveness of Comparative study on differences between EU and US legislation implementation through the type approval process.

- Competent for TA + vehicle inspection
- TAA = dMOW, but \rightarrow domain of dOMG

- \rightarrow Federal government = market surveillance
- \rightarrow Collaboration with DIV (vehicle data)

Legal challenges

- Accountability OEM is (and remains) limited
- Limited influence MS <> GTAA
- \rightarrow and environmental protection
- Scattered competence fields

ooperation

- \rightarrow International exchange of vehicle data (RS, LEZ, ...)?
- \rightarrow More European oversight and coordination
- \rightarrow More cooperation / exchange between MS
- → Post euro 6/VI = opportunity

Post Euro 6/VI

Ambitious emission limits

Complete set of pollutants

Testing representative for real world driving + in service conformity

Extended useful life-cycle

Transparancy OBD vs Protection against Tampering

PN

Reduce complexity where possible

#/km #/km PM 6.0×10¹¹ e,g 6×1011 0.0045 6×10¹¹ NOX HC+NOX 0.005e,f NMHC 6.0×1011 6×10¹¹ 0.020 0.0045 g/km 0.06 0.060 HС 0.0045 6×1011 0.020 0.005^f 0.068 CO c0 0.060 6×10¹¹ 0.0045 0.025 0.100 0.08 Class 0.068 0.075 0.10^d 6×10¹¹ 0.030 0.0030 Date 0.700 0.100 0.17 Category 0.090 0.082 6×1011 0.020 0.0030 ositive Ignition (Gasoline) 1.0 0.700 0.130 0.108 0.035 0.020 0.0030 Stage 6×101 0.880 Type 1 0.160 Compression Ignition (Diesel) 0.035 0.035 0.50 0.025 0.0030 1.000 China 6a 11 Type 2 0.050 0.035 0.045 auderen 0.030 0.500 111 0.050 0.045 0.050 is omgeving 0.500 0.065 Euro 6 0.055 0.630 0.080 Туре

Smoke & Mirrors

Flanders addressing elevated vehicle emissions in real driving conditions

Contact: Roel Vaneerdeweg: roel.vaneerdeweg@vlaanderen.be

