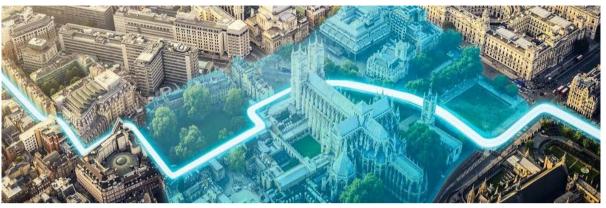
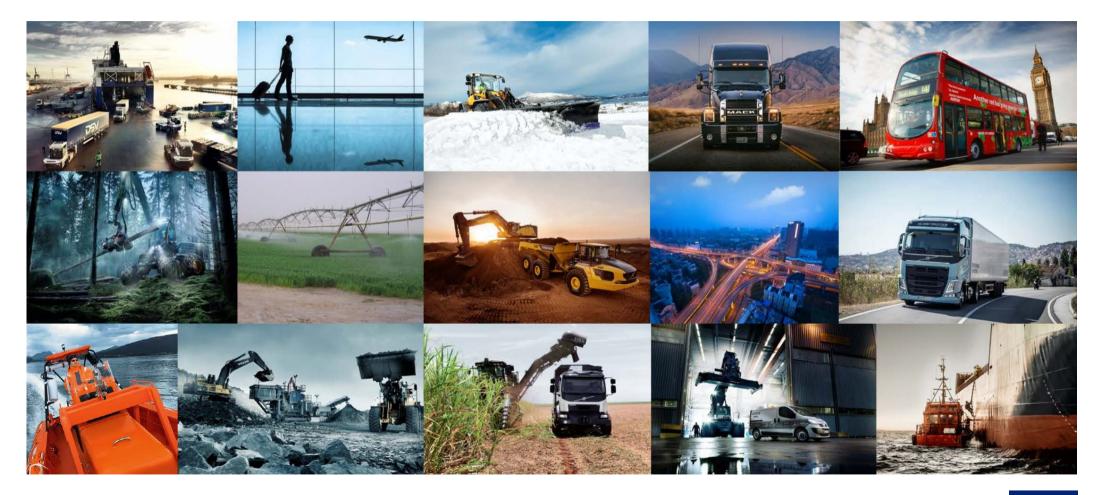

SUSTAINABLE CITIES


A manufacturers perspective on geofencing

Göteborg, May 2019

Peter Kronberg

Safety Director, Volvo Group

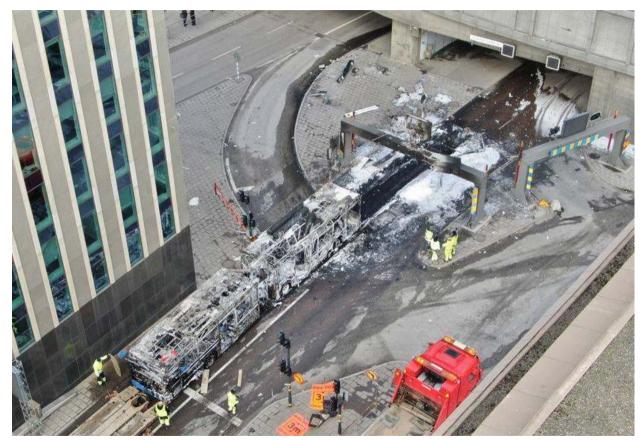


Driving prosperity

Transport Efficiency – the importance of consolidating transports

GVW	Load Capacity	No of Vehicles	Street Utilization	Fuel Index		
26 t	17 t	1	22 m	100	<u> </u>	Reference
12 t	7 t	2,4	43 m	179		70'
3,5 t	1,5 t	11,3	180 m	544		
Cargo Bike	125 kg	136	250 m	0		
Robot	9 kg	1900	950 m	0		

Drottninggatan, Stockholm, April 2017



A driving force for geofencing?

Klara-tunnel, Stockholm, March 2019

Can human error be mitigated by timely info via zone management?

Driving Forces and Enablers

Environmental

What is geofencing?

"To define a virtual boundary around a geographic area"

The geofenced area may be used to trigger a response in the vehicle

With or without active control of the vehicle

Zone management or location-based services

Info-based systems widely used in today's telematic systems

Volvo Buses Zone Management

 Enables vehicles to automatically adjusts to recommendations or restrictions defined for the current geographical location when entering a zone

Applications and use-cases

Transport companies

Manage speed, improves safety and fuel
Reduce wear and tear
Follow-up driver performance
Excessive Idling
Comply with access regulation
Protecting cargo

Businesses

Branding
Reliable deliveries
...but only with improved logistics

Cities

Low speed zones
Silent zones
low-emission zones
access restrictions

Drivers

Real time information Comfort/less stress ...but privacy?

Issues and obstacles

Remote vehicle control

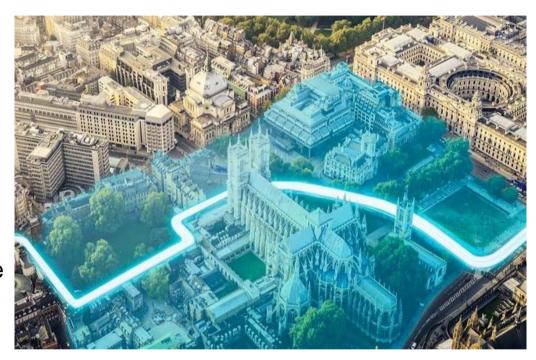
Interface standards and protocols

Maps and positioning

Cyber security (who and how)

Legal and privacy

Business cases



Conclusions

- Geofencing is not a single technology
- Location based services are available already today
- Cyber security and integrity issues need to be addressed
- Work together to develop harmonized protocols, standards and digital interfaces across Europe
- Geofencing is not protection against malicious use and overrideability is likely needed for safety reasons
- Consider the transport operators driving forces and benefits, to create a demand for these types of solutions

