

THE CONDUITS EUROPEAN PROJECT AND ITS

DECISION SUPPORT TOOL WITH KEY PERFORMANCE INDICATORS FOR ITS IN URBAN ENVIRONMENT

Pierre SCHMITZ

AED-DG - European and International relations

Niv EDEN

Technion - Israel Institute of Technology

Cities needs for the best ITS choice

- > Neutral assessment of ITS in urban environment
 - Ratio cost/benefit of an ITS investment
 - Assess the usefulness of an ITS as a whole
 - Identify the limits of an ITS
- Decision Support Tool (DST) for traffic managers and decision makers
- > Allow comparison between different ITS solutions
- Control/assessment of a ITS implementation
- Possibility of sharing results between cities

Solution: KPIs with specific requirements

- Key Performance Indicators (KPIs) easy to use and communicate to decision makers and public
 - No or light extra work for the users
 - Clarity for the political decision makers and the public
- Adapted to cities individuality
 - Geographical scale :
 - o sections, roads, zones, network, ...
 - Adaptability:
 - Ability to use all kind of urban data that are relevant to quantify a performance
 - Weighting possibilities

CONDUITS goal and objectives

Goal of the CONDUITS project

 To establish a coherent set of Key Performance Indicators (KPIs) for ITS used for urban traffic management

Main objectives

- To define a set of Key Performance Indicators for identifying best practices and best technologies
- To test these KPIs through real applications in Paris,
 Rome, Tel-Aviv, Munich and Ingolstadt

The CONDUITS Indicators

www.conduits.eu

c 🕖 nduits

Test in Paris – Bus priority (1)

- Priority on lines 26, 91, 96
- > Implementation in 2006

Anticipated average travel time savings about 30s per trip, allowing 1 bus less for each line

Test in Paris – Bus priority (2)

> Traffic efficiency: Mobility index

$$I_{MOB} = w_{PV} \cdot \frac{1}{|R_{PV}|} \sum_{r \in R_{PV}}^{|R_{PV}|} \frac{ATT_{PV}^r}{D_r} + w_{PT} \cdot \frac{1}{|R_{PT}|} \sum_{r \in R_{PT}}^{|R_{PT}|} \frac{ATT_{PT}^r}{D_r}$$

- minutes/km, weighted for public and private transport
- > Traffic safety: Accidents index

$$I_{ACD-L} = \sum_{l \in L}^{|L|} \left\{ w_l \cdot \sum_{se \in SE}^{|SE|} \left[w_{se} \cdot \sum_{m \in M}^{|M|} \left(w_m \cdot \frac{ACD_{l,se,m}}{DTV_l} \right) \right] \right\}$$

casualties per million vehicles, severity weighted

Test in Paris – Bus priority (3)

- > Traffic efficiency: Mobility index
 - Separately for public and private transport

min/km	Public transport mobility		Private transport mobility	
	Before	After	Before	After
Line 26	4.46	4.25	4.46	4.65
Line 91	4.63	4.33	5.25	5.05
Line 96	5.03	4.67	2.71	3.02
TOTAL	4.71	4.42	4.21	4.26

■ Combined, with $w_{PT} = 0.7$ and $w_{PV} = 0.3$

min/km	I_{MOB}			
Tillii/Kili	Before	After		
Line 26	4.46	4.37		
Line 91	4.82	4.54		
Line 96	4.33	4.17		
TOTAL	4.56	4.37		

Test in Rome - General assessment

Several techniques and technologies, including ITS, are used for traffic management in the entire Greater Rome area

Supplied data:

- Travel times for public transport and private cars between all zones of the city and lengths of these routes
- Occurrences of congestions and their average duration on certain key routes of the urban road network during one year

Test Tel-Aviv – New signal strategies

Recurrent Congestion during the Afternoon / Evening peak hours (~ 45 h/link/month)

Deployment of new traffic management strategies

www.conduits.eu

c 🥖 nduits

Test in Munich - Safety assessment

- Installation of two feedback signs during a test period
- Measuring speeds at two urban streets (speed limit 50 and 30km/h) in both driving directions
- Flashing messages:
 Slow down!
 Thank you!

Test in Ingolstadt – Safety assessment

Congestion of the main axes during peak hours with traffic management by static green waves

- New adaptive green waves management
- Test of 2 kinds of algorithms for optimising green waves:
 - Hillclimbing algorithm
 - Genetic algorithm

Continuation of the CONDUITS project

- End of the CONDUITS project in May 2011
- Kapsch financial support for the design of a "friendly" DST using some CONDUITS KPIs
- Choice of the Pollution KPI
- Brussels proposal: design of a pollution KPI calculation module using files generated in a traditional way by VISSIM simulations
- Case study: effect on pollution of real simulations done for a bus line priority system recently implemented

Brussels case study

- Priority bus line 49
 - Many intersections with traffic lights
- > 4 VISSIM simulations
 - Morning and evening peak hours
 - Situation before and after implementation

Expected results of the bus priority

> Short-term

- Increase average speed of the buses
- Increase average speed of the private vehicles displacement parallel to the line
- Reduction average speed of vehicles crossing the line

> Medium-term

- Change of route choices for private car drivers
- Reduction of time losses in the implementation area

Long-term

 Demand shift towards public transport reduces private car rides

First results of the case study (1)

- The first results reflect the expected short term effects
 - Improvement of the public transport quality:
 - increase average speed of the buses
 - reduction of the stops at intersections

First results of the case study (2)

but... increase in pollution

... what is (hopefully) normal!

First results of the case study (3)

Sensitivity analysis with a pragmatic methodology

The given demand levels of the relevant flows are progressively reduced in increments of 1% and the KPI values are recalculated for each scenario.

Sensitivity analysis of the single pollutants

Pollutant	Morning	Evening
CO2	1,5%	4,0%
NOx	3,5%	6,0%
PM ₁₀	0,5%	3,0%
KPI	1,5%	3, 5%

Advantages of these Indicators

- > Same methodology for all the indicators
- Calculation running with all kinds of data
- Easy weighting of the parameters
- Automatic calculation before, during and after the implementation of an ITS by using the VISSIM files as they are provided
- Allow sharing results got in other cities for similar ITS and the possibility to create a common DB with real measurements

Actual limits of these Indicators

- It will be necessary to wait a few years before having "before and after" data based on real measurements
- Require a cost/benefit analysis to complete the set of KPIs needed to cover the overall sustainability assessment of an ITS
- KPIs comparison between cities still needs an agreement on common weighting

Future developments!

- ➤ Pollution module assessment in other interested cities : Zurich, Stuttgart, Perugia,...
- New Kapsch sponsoring: Traffic efficiency module to be applied to the same VISSIM files and to be tested in Brussels
- Further step: Road safety prediction module
- ➤ Proposal for the design of an integrated sustainability module using CONDUITS KPIs for multimodal trips with VISUM macrosimulation tool in a new European FP7 project

Thank you for your attention!

pschmitz@mrbc.irisnet.be niv@cv.technion.ac.il

