Bus Priority System & complementary tools to improve the bus network's overall level of service

Alexandre BLAQUIERE
Tisséo-SMTC — Public Transport Authority of Toulouse (FR)

POLIS Conference — Bruxelles 29th of November 2011

Toulouse Metropole & Tisséo Network

The Tisséo Network

(Urban PT of Toulouse Metropole)

- 2 Metro lines using VAL System
- 1 Tram line using CITADIS Vehicles opened at the end of 2010
- 66 Bus lines / around 550 buses 17 millions of km in 2010

#130 millions of validations in 2010

Main goal of the Bus Priority

Improve the competitiveness and the attractiveness of the Bus Network towards the Private Car use

- by improving the commercial speed
- by improving the regularity and time schedule reliability
- by offering a better comfort during the travel
- by reducing the exploitation cost of bus lanes

For a bus service with an overall travel time of 25 min and a frequency of a bus / 6 min.

→ you would need around 9 buses/drivers to operate the service

if you reduce from 25 to 22 min the travel time

→ you could operate the service with only 8 buses/drivers

if you reduce from 25 to 21 min the travel time

→ you could propose a frequency of a bus / 5 min.

A quick focus on the Bus Travel Time

The overall Travel Time of a bus service is made of:

- Time when the bus is (supposed) driving
- Time when the bus is stopped:
 - at the bus stop : passenger exchange
 - at a traffic junction / traffic light

Local studies have shown this time lost has a very negative impact on the users' perception of the travel quality.

To reduce the overall Travel Time, one's need to reduce all of these "times" by :

- reducing traffic congestion
- dedicating lanes to the bus or building segregated infrastructure for bus
- modifying the configuration of Bus Stops
- optimizing the time for the passenger exchange
- treating specifically traffic junctions
- acting on the traffic lights in favor to the bus

Actions on the Infrastructure (1/2)

The most efficient measure is to create a dedicated lane / infrastructure:

- segregated lane ...
 like for BRT or BHNS concept
 qualitative and costly infra.
 20% to 50% travel time improvement
- bus lanedifficulty to allocate space20% to 30% travel time improvement
- local treatmentChronobus approach

But in any case, it will be efficient only if respected by other road users

→ Police Enforcement required

Actions on the Infrastructure (2/2)

Basic rules applied in Toulouse:

- road lane width should be at min. 3,50 m on main axis
- road lane width should be at min. 3,00 m on secondary axis
- specific treatment of roundabout and intersection integrating place necessary for the turning movement of buses
- installation of bus stops after traffic junction every time it's possible
- systematically integrates accessibility rules at bus stops level

Treatment of Bus Stops:

All of these rules are described in <u>a dedicated guideline book</u> and systematically applied when road works occurred on bus network.

Using ITS to reduce buses' travel time

Traffic Regulation and Congestion Management through a Urban Traffic Control System

Application of ITS at Public Transport level:

- Automatic Vehicle Location system (SAE)
 that will permit to better regulate the bus network
 and bus frequency
- Ticketing system using smart technology in order to reduce the passengers exchange
- Automatic docking system (like Optiguide©) that will permit to reduce the passengers exchange especially for disabled persons
- Traffic Lights' Bus Priority system
 in order to reduce the time lost crossing a
 traffic junction equipped with traffic lights

Bus Priority System, a quick state of the art

Most Used Technical Solutions:

Using Magnetic Detection Loop

Particularly adapted for dedicated infra

Need road works and hard maintenance

Using Radio Communication

Particularly interesting when buses travelling with other vehicles

Need soft maintenance and tuning

Most interesting results because of the adaptative process!

Similar investment costs:

1500 to 2000 € to equip a Bus 2000 to 2500 € to equip a Traffic Lights Controller

Radio Com. Bus Priority System – Main Principles

Solution that relies on:

- the <u>communication between the bus and the traffic lights controller</u> inside the approach area of the traffic junctions (300 to 500 m)
- the <u>collection and the use of historical data</u> that will permit to know the average approaching profile of the bus
- the possibility to know in advance and accurately the time when the bus will arrive at the traffic junction (when Green lights should be given)

Definition of the Approach Courb

Toulouse Bus Priority System – A strategic choice

A 4 years program adopted in 2009:

- to equip the whole bus fleet (550 buses) with the radio com. bus priority system in order to avoid exploitation constraint to allocate buses to lines supposed to have bus priority
- to treat the "top 10" bus lines of the network
- to progressively integrate bus priority on 150 / 200 traffic junctions
- to progressively replace the loop detection system used on segregated bus infras

Selection of an industrial: COMATIS

Budget of the operation : Bus & Depot : 1,19 M€

Traffic Lights & Parametring: 1,30 M€

Total : 2,95 M€

Toulouse Bus Priority System – Some results figures

Presently: 6 bus lines equipped (should be 8 in the beginning of 2012)

Not all traffic junctions with traffic lights treated especially pedestrian one (politic choice)

Average results:

- reduction between 40 & 60 % of the crossing time
- average save of 50 to 80 seconds for each bus / each course

Disparate results:

- in the city centre (Boulevard) limited results because traffic density, number of buses and limited residual time available
- better results in the inner suburbs / suburbs

Toulouse Bus Priority System – In conclusion ...

After 1 year of system exploitation (of 1st lines equipped):

- a system that needs time to be optimized and requires a permanent follow-up
- a quite efficient solution for dense traffic area ... but won't do miracle! used to convince decision makers to invest on infrastructure
- a technical solution that also permits to better understand the traffic flow and identify traffic "black spots"
- a project that permits to develop exchanges between bus operators and traffic managers

Thank you for your attention!

Alexandre Blaquière alexandre.blaquiere@tisseo.fr

And if you want to know more about Tisséo: www.tisseo.fr

