

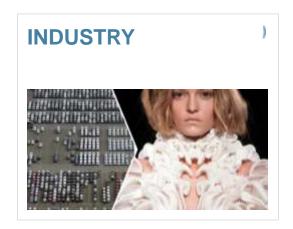
CIVITAS Policy Note on Clean Buses - Supporting decisions for clean buses

2014 ANNUAL POLIS CONFERENCE

28 November, 2014

Madrid, Spain

Teije GORRIS, CIVITAS & TNO


TNO connects people and knowledge to create innovations that boost the sustainable competitive strength of industry and well-being of society.

VISION

THEMES IN TRANSITION

DEFENCE, SAFETY & SECURITY

URBANISATION

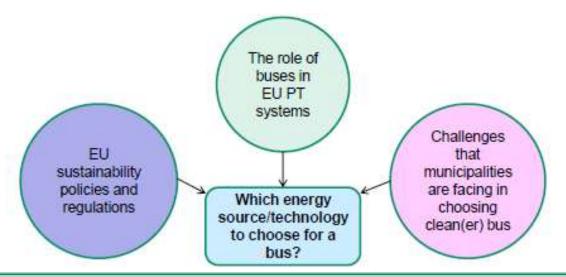
ENERGY

From

research information

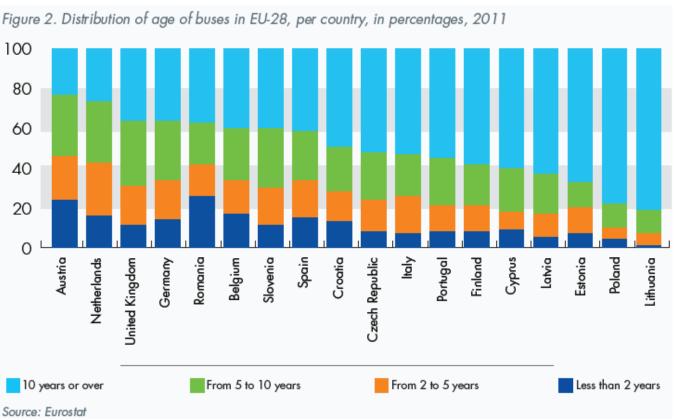
to

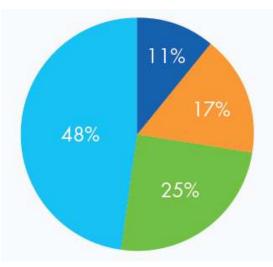
decision making information


Smart choices for cities Clean buses for your city

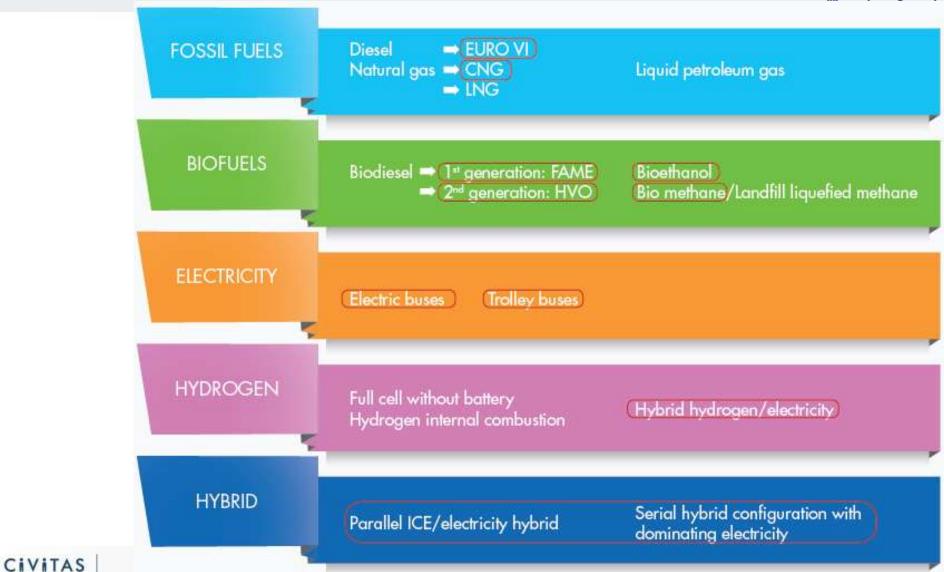
Why this policy note?

 It addresses the questions policy makers have: What is the best bus for my city?


CIVITAS WIKI Policy Note "Clean Buses for your city"


- What are the options available and which energy source/technology to choose for a bus?
- What are the advantages/disadvantages of different options?
- What are the costs of these options?
- Which fuels require installation of additional infrastructure and what are associated to it costs?

The role of buses in EU public transport system


Backbone of many EU public transport systems, providing 7,8% of EU mobility in 2011

What are the clean(er) bus options?

Short term targets (2020)

Municipality perspective:

 Euro VI,VI diesel buses, diesel hybrid/electric buses and buses running on biofuels

EU perspective:

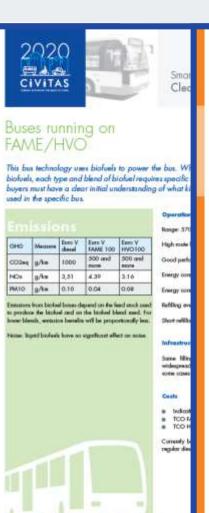
EU 2020 targets: 10% biofuels content, 6% GHG reduction of conventional fuels, 20% GHG emission reduction

- High blends of first or second generation biodiesel to increase the renewable energy share above the blending limit
- Biogas (in CNG buses) to increase the renewable share (up to 100%)
- Hybrid drivelines with diesel or gas engines to further reduce GHG emissions by about 20%.

Long term targets (2050)

Municipality perspective:

 Technologies with lowest (well to wheel) energy consumption and good possibilities for using renewable fuels (e.g. electric buses, trolleybuses, hydrogen fuel cell buses)


EU perspective:

- EU 2050 targets: 60% reduction of GHG emissions from transport
- Full electric buses with clean(er) electricity supply and cheaper bus battery
- Hydrogen buses with production of hydrogen in a renewable way with solar and wind energy

Fact sheets

Smart choices for cities Clean buses for your city

A bus that is driven by a purely electric motor powered by batteries charged with electricity. The vehicle has no other power source other than the battery. Two types are available:

- . Opportunity a-buses aim to minimize the weight of the battery by recharging an route at passenger stopping points. They have medium battery aspacity (typically 40-60 kWh) and need regular charging from the grid at intermediate stops.
- Overnight e-buses carry the weight of battery required to drive the entire route without recharging. They have a large battery capacity (typically > 200kWh) and recharge the battery from the grid only at the depot.

GHO:	Мизмич	Electric bas
000es	g/ke	500
NOs	g/km	0
PM10	g/km	0

Note: Lower more level those standard sheet bases plactic motors are quieter than combustion engineed

Operational performance

a Opportunity - charging become

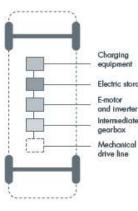
- Short free range of <100 km.
 United race fleetably
- Recharging needed multiple times a day
- + Short secharging time: 5-10 min
- · Energy consumption 2012 (based on prototyping
- Energy consumption 2030: 1.58 kWh/fem

a Oversight - diarging bosse

- Medium free range: 100 200 km;
- Higher roots floatbility
- Recharging at the end of each day
- Very long recharging times more than 3 hours
 Evergy consumption 2012 throad on prototypest
- 1.91 kWh/km
- Energy consequence 2030: 1.66 kWh/km

Both for opportunity and overnight-charging beau charging time depends on the power of charging station and battery

in service life is estimated to be 12-15 years, depending on duty cycle, ambient conditions and charge rate.

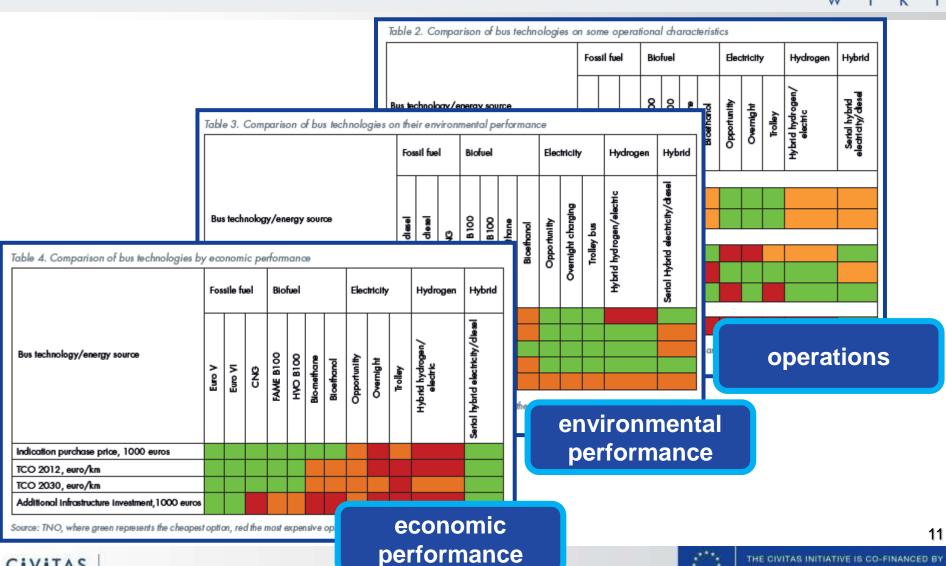

tors to take into consideration

portunity electric buses are considered promi

ernight electric buses are not expected to m y range requirements nor carry a sufficier sengers due to the weight of the batteries w years.

- id advances in technology, therefore ca y need to be done before the purchase in o best possible option available on the marke
- in advantages: one of the cleaner nology
- in disadvantages: high purchase price stment in infrastructure

Electric powertrain



What energy carrier to choose?

THE EUROPEAN UNION

Conclusion

If financial resources allow

municipalities and public transport operators should aim for the zero-emissions or closest to it options.

Otherwise,

especially within current conditions of economic and financial crises conventional diesel buses (Euro VI) and their hybrid configurations represent a very good environmentally friendly option as well.

Want to learn more? Join us!

- 1. Go to "www.civitas.eu"
- 2. Go to "working groups"
- 3. Select one of the CIVITAS Thematic groups
 - Clean vehicles and fuels (moderated by Ivo Crè ICre@polisnetwork.eu)
 - Collective passenger transport (moderated by Cosimo Chiffi chiffi@trt.it)
- 4. Register yourself as user
- 5. Post your question // engage in discussions

Thank you!

Teije Gorris

Contact Details

TNO // CIVITAS WIKI

teije.gorris@tno.nl // teije.gorris@civitas.eu

http://www.civitas.eu

