
TOWARDS THE ELECTRIFICATION OF PUBLIC TRANSPORT VIA PUBLIC-PRIVATE PARTNERSHIP THE EXAMPLE OF LUXEMBOURG

Marcin Seredynski E-Bus Competence Center, Luxembourg

PRESENTATION OUTLINE

part 1 the past Preparing for transition to electrified buses

part 2 the present Launching the e-bus systems

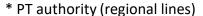
part 3 the future Researching cooperative electrified bus systems

THE PAST

THE PARTNERSHIP

Objective: to gain experience how to decarbonise the network of buses and to enable the setup of eco-system for the testing and deployment of innovative sustainable technologies.

2013 Memorandum of Understanding (MoU)



The Ministry of Economy, the Minstry of Sustainable Development and Infrastructure (MDDI), bus operator Sales-Lentz and Volvo Bus Corporation sign a MoU on the establishment of Luxembourg as a test arena for sustainable public transport systems.

2016 The launch

- Volvo Bus Corporation creates in Luxembourg e-Bus Competence Center
- MDDI operates one opportunity charging station for the RGTR* bus line 226
- Sales-Lentz operates plug-in hybrid buses for the line 226
- Start of operations on the project line 226 begining of 2017

MOTIVATION AND ASSUMPTIONS

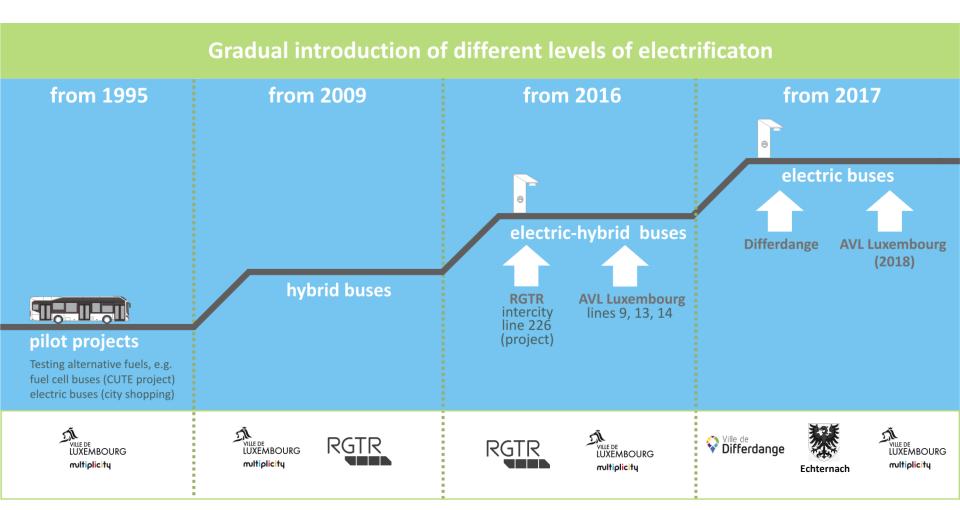
Public transport is essential in areas with high mobility demand

Negative effect of noise and air pollution on society is significant*

Electric buses are the best choice for public transport when considering

- noise,
- pollutants,
- GHG emissions
- energy efficiency

	energy**	NOx TTW**	PM10**	noise
Electric opportunity	1.4 kWh/km	0	0	
Hydrogen	3.1 kWh/km	0	0	
Diesel	4.1 kWh/km	0.5-1.1	0.015	
CNG	5.1 kWh/km	1<	0.01 <	


Vendor lock-in for charging solutions should be avoided

^{*} At least one million healthy life years are lost every year from traffic related noise in the western part of Europe. Source: Burden of disease from environmental noise. Quantification of healthy life years lost in Europe, WHO (2011)

^{**} Source: CIVITAS Policy Note: Smart choices for cities, Alternative Fuel Buses (2016)

ELECTRIFICATION TIMING

MDDI is planning to test different e-bus technologies for regional lines before large-scale rollout.

SYSTEM APPROACH – KEY TO SUCCESS

Luxembourg has the highest level of satisfaction with public transport in EU*

Satisfaction can be attributed to several improvements over the last years such as prioritisation (signals/bus lanes), new bus stops and real-time arrival information.

Public awareness of benefits of electrified buses improves the general image of buses. New livery and in-bus information are very important when launching "clean" buses.

^{*} Source: The Eurobarometer survey of 28,036 Europeans on their happiness with various aspects of public transport in 23 of the 28 Member States, 2014

THE PRESENT

THREE DEGREES OF ELECTRIFICATION IN LUXEMBOURG

Complementary approaches adapted to route characteristics, operational and environmental requirements

hybrid drive electric drive - zero tailpipe emissions, reduced noise hybrid buses electric-hybrid buses (plug-in hybrid)
Allows targeted noise and air quality improvements thanks to Location of electric drive is controlled by zone management system (geofencing). electric buses with opportunity charging

9

TOWARDS NOISE- AND EMISSIONS-FREE LIVABLE CITIES

70 hybrid buses

17 electric-hybrid buses

6 electric buses

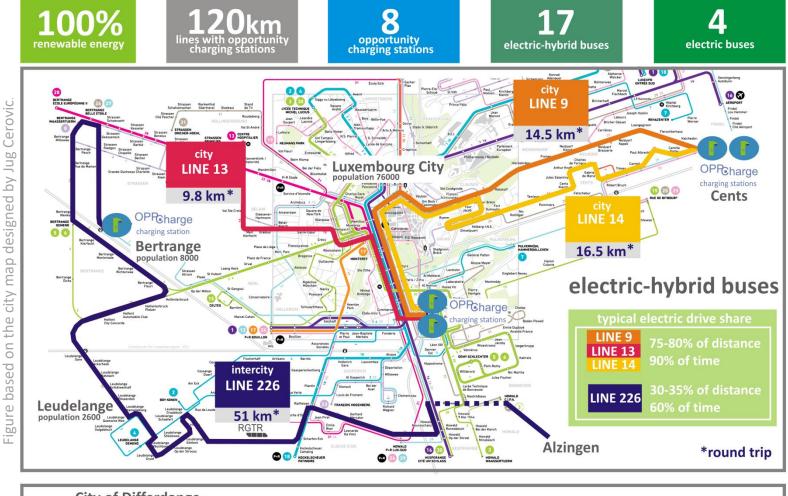
Several operators using electrified buses

THREE MILESTONES IN 2017

RGTR intercity project line 226 operated with electric-hybrid buses

Luxembourg city AVL lines 9/13/14 operated with electric-hybrid buses

Differdange city lines with electric buses.


100% electrified PT city

In all cases the OppCharge* (opportunity charging) stations adopted by several different bus and charging station manufacturers are used to support competition and interoperability.

ELECTRIC-HYBRID AND ELECTRIC LINES LAUNCHED IN 2017

Sustainable mobility testbeds

electric buses

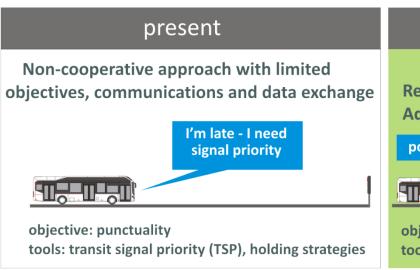
THE FUTURE

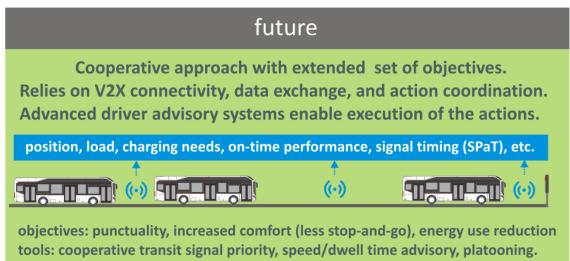
E-FUTURE CHALLENGES

1

With large-scale e-bus deployments the question of when, where, and for how long should battery charging occour becomes a new challenging research problem. The optimal strategy depends on the infrastructure, electricity pricing schemes, traffic conditions, e-bus fleet status etc.

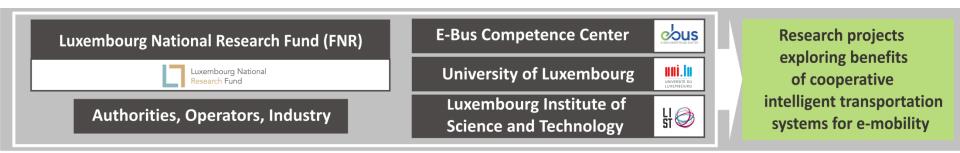
There is a significant difference between the best and the worst case energy consumption of an electic bus.

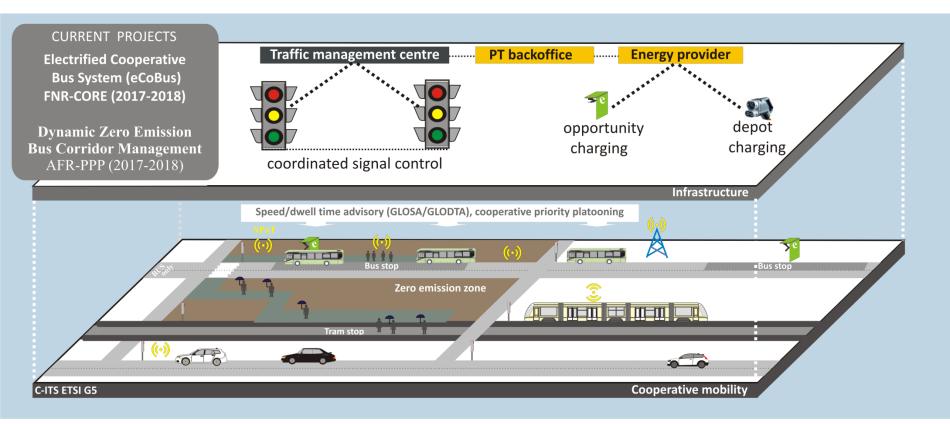

2



The question is how to minimise the consumption via the emerging technologies, which allow to explore benefits of data and connectivity through the cooperative intelligent transportation systems (C-ITS) paradigm.

MAKING THE PT SYSTEMS BETTER VIA C-ITS


C-ITS can improve punctuality, comfort, reduce energy use and faciliate charging



C-ITS is facing "chicken and egg" problem. Its deployment to public transport is however well justified from the point of view of societal interest. Moreover, its wide-scale implementation is easier to achieve than for private transport.

LOOKING TOGETHER INTO THE FUTURE

SUMMARY

There is no single e-bus solution that fits all. The right level of electrification, battery size, and the way of charging depend on operational characteristics, energy source, environmental targets, etc.

An eco-system for testing and deploying innovative and sustainable technologies has been set-up in Luxembourg to look further into the future.

Using open charging interfaces such as OppCharge is essential as it supports competition and interoperability between equipment suppliers.

RECOMMENDED READING

CIVITAS Policy Note: Smart choices for cities. Alternative Fuel Buses, 2016

ZeEUS eBus Report #2, UITP, 2017

Peak demand charges and electric transit buses, U.S. Department of Transportation, Tech. Rep., 2014.

The role of cooperative ITS in supporting electric buses, Proc. 12th ITS European Congress, 2017

How ITS can contribute to reducing CO2 emissions or road transport, Proc. 12th ITS European Congress, 2017

C-ITS Platform Phase II report, European Comission, 2017

From stand-alone ITS to Connected ITS: what does it mean for cities and regions? POLIS conference, 2016

https://www.oppcharge.org/

ENVIRONMENT

Source: CIVITAS Policy Note: Smart choices for cities. Alternative Fuel Buses (2016)

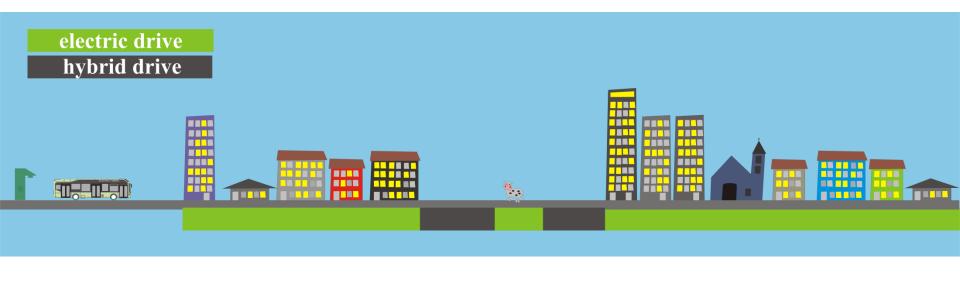
Diesel		Euro V	Euro VI
GHG WTT	gCO ₂ e/km	1383	131 <i>7</i>
NOx TTW (direct)	g/km	3.5	0.5-1.1
PM101 TTW (direct)	g/km	0.1	0.015

1 Excl. PM from brakes, tires and road

Battery electric bus	Examples pathway		Euro -
GHG WTT	EU mix medium	CO2e/km	<i>7</i> 11
	Wind offshore	CO2e/km	0
	Electricity EU mix coal	CO2e/km	1474
	Electricity NG 7000 km	CO2e/km	731
NOx TTW (local)		g/km	0
PM101 TTW (local)		g/km	0

¹ Excl. PM from brakes, tyres and road. Due to regenerative braking EV's have less PM emission from the brakes than conventional vehicles.

(Bio-) CNG	Examples pathway		Euro VI
GHG WTT	EU mix	CO2e/km	1277
	Municipal waste	CO2e/km	273
	Liquid manure	CO2e/km	-1288
NOx TTW (local)		g/km	<1
PM101 TTW (local)		g/km	<0.01

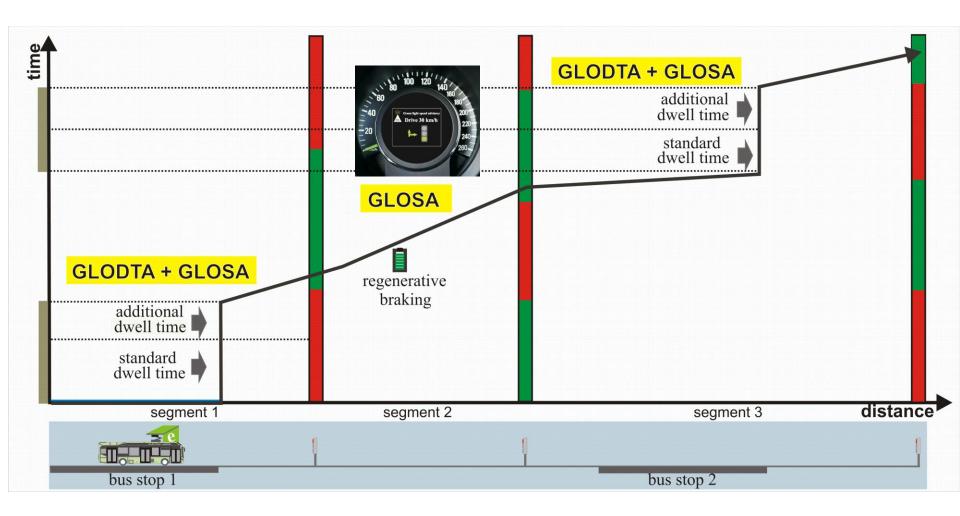

¹ Excl. PM from brakes, tyres and road.

Hydrogen, fuel cell electric	Examples pathway		Euro -
GHG WTT	EU mix (thermal)	CO2e/km	1290
	NG 7000km (electrolysis)	CO2e/km	2516
	Electricity EU mix (electrolysis)	CO2e/km	2849
	Electricity wind (electrolysis)		47
NOx TTW (local)		g/km	0
PM101 TTW (local)		g/km	0

¹ Excl. PM from brakes, tyres and road. Because fuel cell hybrids have regenerative braking, the PM emission from the brakes is lower than for conventional vehicles.

ELECTRIC-HYBRID BUS ZONE MANAGEMENT

Allows targeted noise and air quality improvements



* example from real operations, 11 km route

GLOSA AND GLODTA EXAMPLE

STOP&GO IMPACTS EMISSIONS ENERGY AND COMFORT

