XCYCLE’s innovative measures to increase cycling safety: Infrastructure and human factors

Federico Frabonia, Luca Pietrantonia, Kay Gimmb, Mandy Dotzauerb, Marco De Angelisa, Gabriele Pratia

a Department of Psychology, Alma Mater Studiorum, University of Bologna, Via Berti Pichat 5, 40126, Bologna, Italy
b Deutsches Zentrum für Luft und Raumfahrt, German Aerospace Center, Lilienthalplatz 7, D - 38108 Braunschweig, Germany
Outline

• Cyclists fatalities in Europe
• The XCYCLE project
• XCYCLE results
• Conclusions and open issues
Cyclists’ fatalities in Europe

- **2,015 cyclists fatalities** on EU roads in 2016 (+0.3% in respect to 2015)
- 58% inside **urban areas**
- 20% F and 80% M

28% of all bicycle fatalities happens at **junctions**

XCYCYLE:
Advanced measures to reduce cyclists' fatalities and increase their comfort in the interaction with motorised vehicles

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723970

U.K.
UNIVERSITY OF LEEDS
Institute for Transport Studies (ITS)

The Netherlands
dynniq
energising mobility

Germany
DLR
JENOPTIK

Sweden
vti

Italy
KITE

The Netherlands
Italy
U.K.
#1: Traffic safety analysis

- Analysed main factors contributing to Bicycle-Motorised Vehicle (B-MV) collisions.

- Identified key features of cyclist crashes using latent class analysis and association rule mining (data on B-MV crashes from 10 European Countries)

- Employed decision tree technique to assess the relationship between severity of bicycle crashes and specific factors

#2: Road users’ behaviour analysis

- Analysed errors and violations among cyclists and how traffic infrastructures might reduce unsafe behaviours

- The role of perceived competence, risk perception, unsafe behaviours and cyclists’ anger in cycling near misses

- How journey attributes and the evaluation of motorists’ behavior affect crash occurrence and severity

#3: HMI and acceptance of ITS

- A driving simulator in Leeds has been programmed with common cycle-to-truck conflict scenarios.

- A set of HMI recommendations has been derived covering both visual and acoustic aspects.

- We identified major determinants of acceptance of PCDS + EBR and On-bike collision warning system with prototypes

Negative impact on the potential safety effect of a ITS system by overreliance, distraction or annoyance of the system
#4: in-vehicle and on-bike system

- **In-truck** Cyclists blind spot detection and collision warning
- **On-bike** UWB localization and collision warning system
#5: Infrastructure-based systems

- **Adaptive traffic controller** algorithm in "green wave for cyclists" in Groningen

- **TraffiTowers** in Braunschweig, extracting video recordings and trajectory data with real time risk assessment.

- **Amber light**: We predict critical situations between right-turning motorists and crossing cyclists then send signal with different level of criticality

#6: Integration and evaluation of the systems

- **Braunschweig**: behavioural evaluation at the AIM intersection with different users
- **Groningen**: observation of cyclists' behaviour, assessment of gaze behaviour
- **Multi-country study on “Willingness to pay”** among European cyclists (N = 2381)
- **Qualitative study with truck drivers and cyclists** on XCYCLE systems (using VR)
- **Cost-benefit analysis** to give a broad perspective of the project impact

Successful integration and testing activities in Braunschweig!
Conclusions

• Innovative and cost-effective solutions
 → to promote sustainable mobility
 → Need to find way to support large scale deployment (business cases, new vehicle
 standards, ...)

• Complete segregation (expensive and unfeasible) < Social integration and inclusion
 (e.g. urban shared spaces). Technology can support it.

• Grouping and platooning cyclists through traffic control systems (e.g., green waves)
 → increase safety and reduce unsafe behaviours.

• Trust, perceived safety, and attitude toward technology → most important correlates
 of behavioral intention to use the systems
Open issues and next steps

• A constantly evolving road environment:
 - New vehicles (PMV, electric, connected and automated, ...)
 - Need to pro-actively define new interactions between road users (e.g. VRUs and AVs) → VRUs risks to be neglected.
 - Address underreported and under-investigated dangerous traffic situations (e.g. near-misses)

• Adopting a pro-active strategy → measures and not counter-measures.

Need to adopt “evidence-based” SPI (safety performance indicators) to:
→ Increase transparency

Need to strengthen co-operation between all stakeholders (asset-management, municipalities, police, schools, ...)
Thanks for your attention!

www.xcycle-h2020.eu

Federico Fraboni
federico.fraboni3@unibo.it

Prof. Luca Pietrantoni
luca.Pietrantoni@Unibo.it