Electric vehicle user behavior and policy implications
What can we learn from field studies?

Thomas Franke
Technische Universität Chemnitz
Cognitive & Engineering Psychology
E-Mobility research at TU Chemnitz

- **Focus**: the **user perspective** on EVs
 - User experience & user behavior
 - Implications for EV design & policy

- **Conducted BEV field trials** since 2008
 - MINI E Berlin 1.0 & 2.0, BMW ActiveE Berlin, ...
 - Methodology for international MINI E field trials (US, UK, France,...)

- **Topics** under investigation: the BEV user &
 - Range, eco-driving, HMI design, apps for multimodal mobility, safety, acoustics, regenerative braking, acceptance, charging, V2G, W2V,

- **Methods** (Cocron et al., 2011; Franke et al., 2014a)
 - Field trials & field experiments, data logging, diaries...
 - Focus groups, interviews, questionnaires,
 - Usability tests, expert evaluation, ...
Barriers to widespread EV adoption

- **Attitude–behavior gap**
 - Attitudes towards EVs: generally very positive
 - Purchase intentions: generally relatively low

- **Barriers?** (e.g., Bühler et al., 2014a)
 - “I cannot charge at home.” ➔ charging infrastructure development
 - “EVs are too expensive.” ➔ policy & mass market
 - “Can I really cope with the limited range?”

- **Limited range as a challenge for widespread acceptance of EVs**
 - Larger batteries are not the ultimate solution
 - Ecological footprint of battery production

- **Better understand user-range interaction**
 - Can users adapt to limited range?

EV field trials – data basis

MINI E Berlin 1.0 & 2.0 field trials (2008-2011)
- $N = 110$ private users, 6 months BEV use
 - (>100 fleet users, >40 carsharing users)
- Urban mobility (\varnothing 38 km/day)
- BEV: MINI E, around 160 km range

BMW ActiveE Leipzig – long-distance commuter field trial (2012-2015)
- $N = 75$ private users, 3 months BEV use
- Commuter mobility (\varnothing 94 km/day)
- BEV: BMW ActiveE, around 130-160 km range
- Preliminary data (max. $N = 60$)

Longitudinal research designs:
- T0: before EV experience, T1: with EV experience
Can user adapt to limited range?

Drivers adapt to EV range...
- Increase in comfortable range & perceived fit of mobility resources vs. needs
 (Franke et al., 2012b; Franke et al., 2014b)

How long does it take?
- Urban mobility profile (⌀ 38 km/day): ≈ 2400 km (62 car usage days)
 (Pichelmann et al., 2013)
- Commuter mobility (⌀ 94 km/day): comfortable range stable after >6 weeks usage
 (Franke et al., 2014b)

However: Adaptation does not come automatically (without effort)
- Users who + actively explore and exhaust range = + improvement in comfortable range
 (Franke et al., 2012b)
- Users who + actively try to understand range dynamics = + increase in range prediction skills
 (Franke et al., 2014a)

Implications:
- Practical experience is crucial for EV acceptance & resolving perceived range barrier
- Potential to increase speed & effectiveness of adaptation ➔ gamification
Do users experience range anxiety?

After adaptation phase (T1):

- Relatively high **range satisfaction**: most users experience range as sufficient
 - Urban mobility (\(\bar{\varnothing} 38 \text{ km/day}\)): \(\approx 90\%\) (Franke et al., 2012a; Franke & Krems, 2013a)
 - Long distance commuters (\(\bar{\varnothing} 94 \text{ km/day}\)): \(\approx 79\%\)

- Stressful range situations (**range anxiety**) occur **seldom**
 - Urban: \(\approx 1\) stressful range situation per month (Franke et al., 2012a; Franke & Krems, 2013a)
 - Commuters: \(\approx 2.4\) stressful range situations per month (Franke et al., 2014a)

- Users avoid range stress \(\Rightarrow\) **range comfort zone**

- **Implications:**
 - Range anxiety not adequate to characterize everyday range experience
 - Comfortable range better accounts for user experience and behavior

 - Relevant **benchmark variable** to optimize electric mobility systems
Which factors lead to a higher comfortable range?

- Technical | competent | performant | comfortable range

+ Comfortable Range = + range satisfaction (Franke & Krems, 2013a)

Higher usable range if... (Franke et al. 2012a; Franke & Krems, 2013a)
- Users can subjectively control & predict range resources
- Prior knowledge & daily range practice
- Certain personality characteristics

Implications:
- Increase controllability of range resources – range elasticity & safety options
- Reliability of range estimation & recharging opportunities – trust is important

What is the optimal range? (Franke & Krems, 2013c)

- Range preferences (RP) decrease with experience
- RP > average daily distance
- RP ≈ maximum daily distance in typical week
- Objective range needs predict RP at T1 (not T0)

Fig. 1. Cumulative distributions of M_{7D} and Max_{7D} and T1 minimum acceptable range ($N=64$).

Implications:

- Potential customers with EV experience do not request exaggerated range setups
- “Simulate” experience? Mobility logging & informative feedback
 - Yet: quality of simulation & feedback very important (trust)

Does it also work without charging at home?

- **Matched samples** from MINI E Berlin studies, N = 36 (Bühler et al., 2014b)
 - Matched according to charging needs (daily distance), age, gender, ...
 - **Home chargers** (HC): home-based charging station
 - **Public chargers** (PC): no charging opportunity at home, > 85% public charging, public charging station in walking distance of home/work

- **Results:**
 - Charging frequency: **HC** = 3.4 events/week *versus PC* = 2.0 events/week
 - After adaptation no significant differences in...
 - ... perception of EVs (both positive), perceived usefulness & satisfaction
 - ... willingness to recommend & purchase intentions

- **Implication:**
 - Electric mobility also feasible with only public charging

Can we easily get green energy into batteries?

Renewable (green) energy as **prerequisite** for sustainable electric mobility

- When is energy “green”? – Excess energy from renewable sources (e.g., wind-to-vehicle, W2V)

Does this come automatically? (Franke & Krems, 2013b)

- MINI E Berlin 1.0: W2V system shifted energy input to “green windows”
- Users develop different charging routines ("charging styles")
 - Charging when necessary vs. charging when opportunity
 - Charging style is related to W2V efficiency
- **Incentive mechanism necessary** for +W2V efficiency
 - Gamification (money is not the only way)
- Project: Managed Charging V3.0
 - Field test of incentive mechanisms for intelligent charging

Summing up

- **E-Mobility** already **works** in its current stage of development
- However: **psychological barriers** have to be addressed

Perceived range barrier can be overcome by **practice** in dealing with range
- However: support of adaptation process \Rightarrow gamification
- Maybe helpful: simulation of EV mobility

Available **safety options** can increase controllability of range \Rightarrow + comfortable range
- Reliability is crucial – e.g. public charging with reservation

Battery development: reduce vehicle price or increase battery range?
- Users can adapt to limited range \Rightarrow rather reduce vehicles costs
- High variance in preferences & mobility needs \Rightarrow different battery sizes

Environmental benefit of EVs is strongly dependent on the **user factor**
(Franke et al., 2012c)
Thanks a lot for your attention!

Contact: thomas.franke@psychologie.tu-chemnitz.de

This research was funded by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety.
References

