Design of Electric Bus Systems

ebusplan GmbH

17/02/2016
Philipp Sinhuber
+49 (0)241 5380 7557
p.sinhuber@ebusplan.com
ebusplan GmbH
Hüttenstr. 7 – 52068 Aachen – Germany
www.ebusplan.com
Introduction: ebusplan

Challenges for the electrification of local public transport buses

Our solution – software based planning process

Summary
Introduction: ebusplan
RWTH Aachen ISEA – Power Electronics, Electrical Drives, Battery Systems

- RWTH Aachen ISEA
 - > 100 Research associates
 - > 120 Students

- Battery Systems (Prof. Sauer):
 - One of the largest university-bound research groups for battery systems in Europe
 - Extensive test capacities for battery cells and packs
 - Modelling, battery pack development, BMS, diagnostics
 - Electric drivetrains

- Segment Local Public Transport:
 - Topics: Dimensioning, Simulation, Evaluation
 - Projects: H2-Bus-NRW, SEB / EÖPNV, ZeEUS, ELIPTIC, Mun-E-P 1 & 2, LoCarUT, Industry projects

17/02/2016 Philipp Sinhuber
Projects
SEB E-ÖPNV and ZeEUS

- Idea:
 - Charging with up to 500 kW
 - For several minutes
 - To facilitate the integration of charging events into bus runs

Source: Pintsch-Bamag
Spin-Off from ISEA of RWTH Aachen: “ebusplan GmbH“

- Technical Expertise, Experiences and Software Tools made available for:
 - Public Transport Operators (PTO)
 - Cities / Transport Authorities (PTA)
 - Bus manufacturers
 - Consultants

- Portfolio:
 - Feasibility studies
 - Development of detailed electrification concepts (also for large scenarios with multiple bus lines and many vehicles)
 - Trainings und workshops
 - Software solutions (to come)
Our Portfolio - From the First Move to the Concrete Implementation Concept

- **On-Site Workshops**
 - Quick start into the topic “electric buses” (technology, costs, realistic expectations of the technology)
 - Involvement of local stakeholders (e.g. operator, authority, politics), creation of a common basis for further planning and decision making

- **Feasibility Studies**
 - Analysis of local-specific operational conditions
 - Identification of routes to start electrification with
 - Economic and ecologic impacts of electric buses

- **Development of Concrete Electrification Concepts**
 - Software tool to continuously support the local planning process and enable coping with changing framework conditions
Challenges of electrification of LPT buses
Planning and specification of the operation and of the technical system

- Decisive issues:
 - Energy consumption?
 - Driving range of the vehicles?
 - Battery size?
 - Strategic positioning of the charging stations?
 - Required charging power?
 - Electricity grid available?
 - Costs?
 - Integration of charging phases into operations?
 - Planning of vehicle schedules (bus runs)?
 - Route changing bus runs?

17/02/2016 Philipp Sinhuber
Different Approaches for the Introduction of Electric Buses

- „Trial & Error“ → expensive, time-consuming

- “Limit daily mileage to 100…200 km and use ‘Overnight Charging’ ” → Substantial changes in bus operation required (additional vehicles, additional personnel time)
 → How to determine the limit for the bus runs?
 Trial and error? Rely on manufacturer specifications?

- “Manual dimensioning” of technical system under consideration of
 - Frequencies (intervals) and dwell times at terminal stops (incl. buffer for delay)
 - Route characteristics, heights profile, …
 - Occupancy rates
 - Consumption of Heating / A/C
 - Available battery types (power, energy, durability/guarantee, costs, …)
 - Availability and costs of electricity grid and building ground for charging stations
 - energy consumption (normal case VS worst case)
 - Many more …
Our approach: Software-supported planning process
Dedicated Software Tool
“Electrification Planner”

- Detailed simulation of the entire operation (all single trips)

- Definition & evaluation of various configurations
 - Location and power of charging stations
 - Battery technology and size
 - Evaluation of technical feasibility and costs

 ➔ The approach makes transparent the impact of decisions

- Optimization algorithms finds scenario with lowest Total Costs of Ownership

 ➔ The approach tailors solutions to the specific local requirements
Example for the simulation of bus operation:
Detailed entire-day profiles for each vehicle and charging station

- Charging station at terminal stop A
- Charging station at terminal stop D
- Bus garage

Schedule: “Veh3“

Power offered (kW), Vehicle status, State of Charge (%)
Optimisation algorithm calculates many different configurations (charging stations and vehicle battery capacities)
System Design
Exemplary Results of Optimisation

Cost shares

- Vehicles: 55%
- Infrastructure: 24%
- Energy: 21%

<table>
<thead>
<tr>
<th>Optimisation variable</th>
<th>Optimised value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery capacity</td>
<td>125 kWh</td>
</tr>
<tr>
<td>Terminal stop A</td>
<td>125 kW</td>
</tr>
<tr>
<td>Terminal stop B</td>
<td>0 kW</td>
</tr>
<tr>
<td>Terminal stop C</td>
<td>0 kW</td>
</tr>
<tr>
<td>Terminal stop D</td>
<td>270 kW</td>
</tr>
<tr>
<td>Terminal stop E</td>
<td>0 kW</td>
</tr>
<tr>
<td>Depot / garage</td>
<td>1 x 100 kW</td>
</tr>
</tbody>
</table>
Allocation of Costs
Possible Synergies Regarding Infrastructure

Small scenario
- Vehicles: 55%
- Infrastructure: 24%
- Energy: 21%

Medium scenario
- Vehicles: 61%
- Infrastructure: 29%
- Energy: 10%

⇒ Shrinking share of infrastructure costs
Parameter Variation and Typical Scenarios to Evaluate

- What if …
 - …the specific energy of the battery increases in near future?
 - …the costs for the battery system decreases in near future?

- Comparison of different battery systems with different performance
 - High Energy VS High Power
 - NMC, LFP, LTO
 - Different durability / different guarantee periods

- How would the system look like when heating is powered by…
 - …the battery system?
 - …an additional fuel heater?

- Variation of basically any parameter possible (e.g. electricity cost, …)
Our Approach: Software-Supported Planning

- Frequent and easy re-calculation → efficiency increase in planning process

Graphical Representation:
- **PTA (Public Transport Authority)**
- **PTO (Public Transport Operator)**
- **El. Grid Operator**
- **City / Municipality**

Interactions:
- LCC calculator
- Optimization algorithm
- Sensitivity Analysis
- Models of vehicle and driver

Input:
- Operational conditions (e.g., vehicle schedules)
- Availability and costs of grid connection

Output:
- Available space for charging infrastructure

Suppliers:
- Supplier (bus manufacturer, charging infrastructure, battery supplier)

PTO: Public transport operator
PTA: Public transport authority
Software tools, project experience and state of the art knowledge are combined within the ebusplan consultancy service.

Software-based planning approach
- evaluates and compares electrification concepts prior to expensive investments
- finds cost advantages over “manual” system design (by optimization)
- reduces complexity and therefore enables handling highly complex scenarios (e.g. not only single bus lines)
- enables fast and efficient coping with changing framework conditions
- provides a transparent basis for negotiations between the involved local stakeholders (e.g. by concrete load profiles for vehicles and charging infrastructure).

Planning efficiency, transparency and reliability
Design of Electric Bus Systems

ebusplan GmbH

17/02/2016
Philipp Sinhuber
+49 (0)241 5380 7557
p.sinhuber@ebusplan.com
ebusplan GmbH
Hüttenstr. 7 – 52068 Aachen – Germany
www.ebusplan.com