Towards a harmonised set of KPIs to assess and forecast the impacts of network management measures

The CONDUITS Initiative

Gisa GAIETTO
City of Stuttgart
Integrated Traffic Management Center

Pierre SCHMITZ
Brussels Mobility
European & International Affairs
Cities needs when they have to chose an ITS

- Neutral assessment of ITS in urban environment
 - Ratio cost/benefit of an ITS investment
 - Assess the usefulness of an ITS as a whole
 - Identify the limits of an ITS

- Decision Support Tool (DST) for traffic managers and decision makers

- Allow comparison between different ITS solutions

- Control/assessment of an ITS implementation

- Possibility of sharing results between cities
Solution: KPIs with specific requirements

- Key Performance Indicators (KPIs) easy to use and communicate to decision makers and public
 - No or light extra work for the users
 - Clarity for the political decision makers and the public

- Adapted to cities individuality
 - Geographical scale:
 - sections, roads, zones, network, …
 - Adaptability:
 - Ability to use all kind of urban data that are relevant to quantify a performance
 - Weighting possibilities
Goal of the CONDUITS project

- To establish a coherent set of Key Performance Indicators (KPIs) for ITS used for urban traffic management

Main objectives

- To define a set of Key Performance Indicators for identifying best practices and best technologies
- To test these KPIs through real applications in
 - Paris,
 - Rome,
 - Tel-Aviv,
 - Munich
 - Ingolstadt

\[I_{MOB} = w_{PV} \cdot \frac{1}{|R_{PV}|} \sum_{r \in R_{PV}} \frac{ATT_{PV}^r}{D_r} + w_{PT} \cdot \frac{1}{|R_{PT}|} \sum_{r \in R_{PT}} \frac{ATT_{PT}^r}{D_r} \]
The CONDUITS set of indicators
The Brussels case study

- Priority bus line 49
 - Many intersections with traffic lights

- 4 VISSIM simulations
 - Morning and evening peak hours
 - Situation before and after implementation
Expected results of the bus priority

- **Short-term**
 - Increase average speed of the buses
 - Increase average speed of the private vehicles displacement parallel to the line
 - Reduction average speed of vehicles crossing the line

- **Medium-term**
 - Change of route choices for private car drivers
 - Reduction of time losses in the implementation area

- **Long-term**
 - Demand shift towards public transport reduces private car rides
The first results reflect the expected short term effects:

- Improvement of the public transport quality:
 - increase average speed of the buses
 - reduction of the stops at intersections

First results of the case study (1)

<table>
<thead>
<tr>
<th>Ave. Speed [km/h]</th>
<th>southbound</th>
<th>northbound</th>
<th>before</th>
<th>after</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16.8</td>
<td>17.3</td>
<td>17.4</td>
<td>18.5</td>
<td>+ 3%</td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td>17.4</td>
<td>18.5</td>
<td></td>
<td>+ 6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Stops [-]</th>
<th>southbound</th>
<th>northbound</th>
<th>before</th>
<th>after</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>-18%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>43%</td>
<td>- 43%</td>
</tr>
</tbody>
</table>
but… increase in pollution

… what is (hopefully) normal!
First results of the case study (3)

- **Sensitivity analysis with a pragmatic methodology**
- The given demand levels of the relevant flows are progressively reduced in increments of 1%
- and the KPI values are recalculated for each scenario.

Sensitivity analysis of the single pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Morning</th>
<th>Evening</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>- 1,5%</td>
<td>- 4,0%</td>
</tr>
<tr>
<td>NOₓ</td>
<td>- 3,5%</td>
<td>- 6,0%</td>
</tr>
<tr>
<td>PM10</td>
<td>- 0,5%</td>
<td>- 3,0%</td>
</tr>
<tr>
<td>KPI Pollution</td>
<td>- 1,8%</td>
<td>- 3,9%</td>
</tr>
</tbody>
</table>
Advantages of these Indicators

- Same methodology for all the indicators
- Calculation running with all kinds of data
- Easy weighting of the parameters
- Automatic calculation before, during and after the implementation of an ITS by using the VISSIM files as they are provided
- Allow sharing results got in other cities for similar ITS and the possibility to create a common DB with real measurements
Actual limits of these Indicators

- It will be necessary to wait a few years before having “before and after” data based on real measurements.
- Require a cost/benefit analysis to complete the set of KPIs needed to cover the overall sustainability assessment of an ITS.
- KPIs comparison between cities still needs an agreement on common weighting.
Future developments planned in Brussels

➢ Further steps: Road safety prediction module and Road safety prediction module

➢ Design of an integrated sustainability module using CONDUITS KPIs for VISSIM micro simulations

➢ Implementation of this integrated sustainability module for VISUM macro simulations and OPTIMA simulations
The Stuttgart case study

The Stuttgart Measures
The Stuttgart case study

Emission-based traffic control

Test site B14
- Main arterial road (3.5 km, 10 crossings, 2-3 lanes/direction)
- High traffic load, esp. in peak time
- High emissions
- Public transport, pedestrian and bicycle crossings

Modelling emission impact by

Microscopic Simulation
The Stuttgart case study

Measures to reduce stop-and-go traffic are going to be implemented and tested:

- Dynamic speed limit: 50 km/h and 40 km/h
 (30 km/h on a section as recommendation)
- Depending on immission situation or traffic situation
- Speed enforcement by cameras
- Start of operation middle of 2014
- Increase public awareness for the measure
Evaluation:

- Comparison before (July 2013), intermediate (May 2014) and after situation (October 2014)
- Test of different scenarios for control strategy
- Measuring of immissions by measurement stations (NO2, PM10)
- Noise level (national guidelines)
- Traffic counts, traffic observation, travel time measurement
- Compliance rates observation
- Effects on pedestrians, public transport, cyclists and traffic safety
The Stuttgart case study

Micro Simulation VISSIM -> CONDUITS/AIRE:

VISSIM
- single vehicle data every 0.5 s,
- travel time, average speed, congestion, stops

CONDUITS/AIRE
- emissions NO\(_x\), PM10, CO\(_2\) -> emissions KPI
- travel time aggregation

Other impacts
- waiting time for pedestrians/bicycles, accident records, costs, sensitivity tests,
- cost-benefit analysis
Advantages of the Conduits Tool for us so far:

- Good transferability and therefore an easy adaption into our system
- Fast assistance and support in case of technical problems
- Help to convince the city council with their decisions
- KPI`s for Traffic efficiency and pollution
Other developments outside Brussels and Stuttgart

- Tel Aviv
 - CIVITAS project 2MOVE2
 - Bus priority case study
 - To be completed by middle of 2014.
 - KPIs: Traffic efficiency and Pollution
- Haifa
 - Case study covers travel times in tunnel delivered through VMS. Aim of giving travel times is to encourage drivers to use tolled tunnel rather than alternative congested route.
 - KPI: Traffic efficiency (+ Pollution !)
Future developments: some thoughts!

- Integrated DST module including Traffic – Road safety – Pollution reduction in a first step
- Scientific approach for the choice of the KPIs weightings
- "Validation" of these weightings by political representatives
- Impacts of different vehicle fleet compositions on the pollution KPI
- Feasibility study of a predictive social inclusion KPI module for future inclusion in CONDUITS DST
- Discussion with PTV for a better integration of the CONDUITS DST in their products
Thank you for your attention!

pschmitz@mrbc.irisnet.be & Gisa.Gaietto@stuttgart.de

The CONDUITS Decision Support Tool is free of charge and a user manual is available, as well as a technical support.

Contact: Suzanne Hoadley, POLIS, shoadley@polisnetwork.eu